
- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
Стабилизатор напряжения (СН), защищенный от повреждения разрядным током конденсаторов.
При наличии в выходной цепи СН конденсатора большой емкости иногда необходимо принимать меры по защите микросхемы, то есть по предотвращению разрядки конденсатора через ее цепи. Дело в том, что обычно используемые в цепях питания устройства конденсаторы емкостью до 10 мкФ и более обладают малым внутренним (емкостным) сопротивлением, поэтому при аварийном замыкании той или иной цепи устройства возникает импульс тока, значение которого может достигать десятков ампер. И хотя этот импульс очень кратковременен, его энергии может оказаться достаточно для разрушения микросхемы.
Энергия импульса зависит от емкости конденсатора, выходного напряжения и скорости его уменьшения [9].
Выходное напряжение устройства Uвых = Uвых.ст + IR2 R2 , где Uвых.ст – выходное напряжение микросхемы, IR2 – ток через
резистор R2.
Рис.41 Сопротивление резисторов R1 и R2 рассчитывают по формулам:
R1 = Uвых.ст/IR2 + Iп; R2 =(Uвых – Uвых.ст ) / IR2 ,
где Iп – ток потерь в микросхеме, равный 5...10 мА. Для нормальной работы устройства ток IR2 должен быть, как минимум, вдвое больше тока Iп . Приняв IR2 = 20 мА, в рассматриваемом случае ( Uвых = 10 В, Uвых.ст = 5 В ) получаем
R1 = 5/(0,02 + 0,01) = 333 Ом, R2 = (10 – 5)/0,02 = 250 Ом.
Поскольку выбор сопротивлений этих резисторов из стандартного ряда номиналов приводит к отклонению выходного напряжения от расчетного значения, резистор R2 рекомендуется выбирать построечным. Это позволит в определенных пределах регулировать выходное напряжение.
Мощность Ррас , рассеиваемая микросхемой при максимальной нагрузке, определяют по формуле:
Ррас = Iвых(Uвх – Uвых) + Iп Uвх .
Конденсатор С1 необходим только в том случае, если длина проводов соединяющих СН с конденсатором фильтра выпрямителя, больше 100 мм; С2 сглаживает переходные процессы, и его рекомендуется устанавливать при наличии длинных соединительных проводов (печатных проводников) и в тех случаях, когда недопустимы броски тока и напряжения в цепи питания нагрузки. Что касается конденсатора С3 то он служит для дополнительного уменьшения пульсации напряжения на выводе 8 микросхемы DA1.
Наиболее подходят для использования в стабилизаторах танталовые оксидные конденсаторы, обладающие (конечно, при необходимой емкости) малым полным сопротивлением даже на высоких частотах: здесь танталовый конденсатор емкостью 1мкФ эквивалентен алюминиевому оксидному конденсатору емкостью примерно 25 мкФ.
При соответствующем выборе микросхемы и сопротивления резисторов R1 и R2 выходное напряжение может быть более 25 В (в любом случае оно не должно превышать разности Uвх.mах – Uпд , где Uпд – минимально допустимое падение напряжения на микросхеме). Емкость конденсаторов С2, С3 – не менее 25 мкф.
СН
со ступенчатым включением (рис. 42).
Функции “коммутирующего” элемента в
этом устройстве выполняет транзистор
VT1. В момент включения питания начинает
заряжаться конденсатор С3, поэтому
транзистор открыт и ш
рис.
42
Как видно из схемы, отличие этого СН от устройства по схеме на рис. 41 (кроме отсутствия диодов и конденсатора С3) заключается в замене резистора R2 стабилитроном VD1. Последний поддерживает более стабильное напряжение на выводе 8 микросхемы DA1 и тем самым допол- нительно уменьшает колебания напряжения на нагрузке.
рис. 43 Недостаток устройства – невозможность плавного регулирования выходного напряжения (его можно изменять только подбором стабилитрона VD1).
СН с внешними регулирующими транзисторами. Микросхемы 142ЕН5, 142ЕН8, 142ЕН9 в зависимости от типа могут отдавать в нагрузку ток от 1,5 до 3 А. Однако эксплуатация их с предельным током нагрузки нежелательна, так как требует применения эффективных теплоотводов (допустимая рабочая температура кристалла ниже, чем у большинства мощных транзисторов). Облегчить режим работы микросхемы в подобных случаях можно, подключив к ней мощный регулирующий транзистор.
Она поддерживает выходное напряжение на заданном уровне, как и в типовом включении: при повышении входного напряжения снижается входной ток, а следовательно, и напряжение управляющего сигнала на эмиттерном переходе транзистора VT1, и наоборот.
Применяя такой СН следует иметь в ввиду, что минимальная разность напряжений Uвх и Uвых должна быть равна сумме минимального падения напряжения на используемой микросхеме и напряжения Uэб регулирующего транзистора. Необходимо также позаботиться об ограничении тока через этот транзистор, так как при замыкании в нагрузке он может превысить ток через микросхему в число раз, равное статическому коэффициенту передачи тока h21Э и достичь 20 А и даже более. Такого тока в большинстве случаев достаточно для вывода из строя не только регулирующего транзистора, но и нагрузки.
Основные электрические параметры интегральных стабилизаторов с фиксированным выходным напряжением приведены в табл. 2.
Таблица 2
ИС |
Uвх , B min...max |
Uвых , B min...max |
KU , %/B не более |
KI , %/А не более |
Kсг , дб 1кГц , не более |
aiUвых , %/ оС не более |
142ЕН5А |
7,5...15 |
4,9......5,1 |
0,05 |
1 |
70 |
0,02 |
142ЕН5Б |
8,5...15 |
5,88...6,12 |
0,05 |
1 |
70 |
0,02 |
142ЕН5В |
7,5...15 |
4,9......5,1 |
0,05 |
1 |
70 |
0,02 |
142ЕН5Г |
8,5...15 |
5,88...6,12 |
0,05 |
1 |
70 |
0,02 |
КР142ЕН5А |
7,5...15 |
4,9......5,1 |
0,05 |
2 |
60 |
0,03 |
КР142ЕН5Б |
8,5...15 |
5,88...6,12 |
0,05 |
2 |
60 |
0,03 |
КР142ЕН5В |
7,5...15 |
4,82...5,18 |
0,05 |
2 |
60 |
0,03 |
КР142ЕН5Г |
8,5...15 |
5,8.......6,2 |
0,05 |
2 |
60 |
0,03 |
142ЕН8А |
11,5..35 |
8,73......9,27 |
0,05 |
0,67 |
40 |
0,02 |
142ЕН8Б |
14,5..35 |
11,64...12,36 |
0,05 |
0,67 |
40 |
0,02 |
142ЕН8В |
17,5..35 |
14,55...15,45 |
0,05 |
0,67 |
40 |
0,02 |
К142ЕН8А КР142ЕН8А |
11,5..35 |
8,73.....9,27 |
0,05 |
1 |
30 |
0,03 |
К142ЕН8Б КР142ЕН8Б |
14,5..35 |
11,64...12,36 |
0,05 |
1 |
30 |
0,03 |
К142ЕН8В КР142ЕН8В |
17,5..35 |
14,55...15,45 |
0,05 |
1 |
30 |
0,03 |
К142ЕН8Г КР142ЕН8Г |
11,5..35 |
8,64.....9,36 |
0,1 |
1,5 |
30 |
0,04 |
К142ЕН8Д КР142ЕН8Д |
14,5..35 |
11,52...12,48 |
0,1 |
1,5 |
30 |
0,04 |
К142ЕН8Е КР142ЕН8Е |
17,5..35 |
14,4......15,6 |
0,1 |
1,5 |
30 |
0,04 |
142ЕН9А |
23....45 |
19,6......20,4 |
0,05 |
0,67 |
30 |
0,02 |
142ЕН9Б |
27....45 |
23,52..24,48 |
0,05 |
0,67 |
30 |
0,02 |
142ЕН9В |
30....45 |
26,46..27,54 |
0,05 |
0,67 |
30 |
0,02 |
К142ЕН9А |
23....45 |
19,6......20,4 |
0,05 |
1 |
30 |
0,03 |
К142ЕН9Б |
27....45 |
23,52..24,48 |
0,05 |
1 |
30 |
0,03 |
К142ЕН9В |
30....45 |
26,46...27,54 |
0,05 |
1 |
30 |
0,03 |
К142ЕН9Г |
23....45 |
19,4......20,6 |
0,1 |
1,5 |
30 |
0,04 |
К142ЕН9Д |
27....45 |
23,28..24,72 |
0,1 |
1,5 |
30 |
0,04 |
К142ЕН9Е |
30....45 |
26,19..27,81 |
0,1 |
1,5 |
30 |
0,04 |
КР1157 КР1162 |
Электрические характеристики этих ИС указаны в параграфе 2. 3. |
Рассмотренные стабилизаторы идентичны по схеме, каждый из них содержит устройство защиты от замыкания цепи нагрузки. Различаются они только максимальным выходным током и номинальным выходным напряжением, которое имеет одно из следующих значений: 5, 6, 9, 12, 15, 20, 24, 27 В.