
- •Visa велико, а действительные последствия ареста, да и сама его
- •1" С 9 компьютерными кражами в Вашингтонском университете.
- •1000 Коммерческих организаций в России и не менее чем 600 банков
- •Ice, zip и сжатия дисков на ibm pc. Употребление этих кодов
- •14 Символов, то при кодировке ascii он занимает 112 бит, в то
- •10%. Несомненно, что для более эффективного ее уплотнения нужны
- •11, Либо байтом точек исходного изображения. Число повторений
- •XIX века Клаузен первым предложил для этой цели код авс, a
- •Vanol a, an ababa It is hoped
- •История криптологии
- •Появление шифров
- •Veni vidi vici, то есть пришел увидел победил, сделанное Цезарем
- •5Х5, заполненный алфавитом в случайном порядке. Для шифрования на
- •2 Дисков, помещенных на общую ось, содержал на ободе алфавит в
- •Становление науки криптологии
- •314, Получаем шифровку:
- •0' 90' 180' 270' Шифp
- •1, Став королем Англии, хотел пригласить Лейбница на британскую
- •Криптология в Новое время
- •XIX век с расширением связных коммуникаций занялся
- •62985, Очень затрудняющая расшифровку коротких сообщений. Гораздо
- •25 Электрических контактов, столько же, сколько букв в алфавите.
- •1, Который в 1712 году встречался с Лейбницем, чтобы уговорить
- •1812 Года замечается знание и употребление шифров. Исследователи
- •XIX века и до революции, правительственные криптоаналитики читали
- •1923 Года Советы снова сменили скомпрометированные
- •Элементы криптоанализа
- •Характеристики сообщений
- •45% Сократить длину файлов в формате ascii. Таким образом,
- •I, а вероятности Pij появления знака j при условии, что перед ним
- •3.5 Бит, что эквивалентно примерно II буквам в русском алфавите
- •1. Текст и шифр лишь кажутся независимыми, по-
- •2. Статистические испытания являются единствен-
- •3. Статистические проверки являются, пожалуй,
- •9 Или их сочетания маловероятны. Поэтому будем считать, что текст
- •1975 Году слушатели лекций по криптологии Винкель и Листер
- •56 Бит, что недостаточно для таких задач, как национальная
- •Idea - Improved Proposed Encryption Standard - улучшенный
- •III. Началом третьего периода развития криптоло-
- •130 Десятичных цифр, приведенного в их публикации, потребует
- •10**(-38). Вместе с тем, что очень важно, восстановить
- •5 Лет, а это время - приемлемый срок жизни стандарта и шифров.
- •1916 Году выдающимся математиком нашего века Германом Вейлем.
- •2**N-1. Если 2**n-1 простое число, то последовательность
- •Ibm, которая привезла в Австралию заказанную ей программную
- •1. Область загрузки диска, сохраняющая основ-
- •2. Таблица расположения файлов (fat) и дирек-
- •3. Последний уровень защиты - файловый. Не-
- •10 Абонентов, имеющих связь друг с другом, требует как минимум 90
- •Image.Cfg .. A:
- •Idea. Ключ idea длиной в 128 бит, на первый взгляд кажется
- •1993 Году лишь незаконное использование кредитных карточек с
- •1200 Раз перевел по 10 фунтов на собственный счет, зная, что
- •300 Часов круглосуточно отслеживая телефонные звонки, засекли его
- •100 Рабочих станций этой фирмы, объединенных в сеть,
- •20 Случаев пользователь вместо пароля вводит: свое имя, название
- •Ivanuglov как пароли. При анализе списка пароля наблюдались такие
- •3.11, Когда за счет посылки сообщения с адресом станции
- •Irene iron jazz job julia
45% Сократить длину файлов в формате ascii. Таким образом,
сообщения языка занимают места больше, чем это необходимо. Это
явление называют избыточностью языка. Благодаря ему искажения
отдельных символов сообщения зачастую не разрушают содержания,
что случилось бы при отсутствии избыточности. Заметьте, у
компьютера наиболее часто встречаемые символы ETOANIRSHDLU (даны
в порядке убывания частот в английском языке) вынесены в центр
клавиатуры, чтобы при наборе текстов движение пальцев было бы
минимальным. Это расположение клавиш было предложено
изобретателем линотипа Оттомаром Мергенталером, который
использовал избыточность языка для облегчения работы.
Утверждение, что вероятность появления символа в связном
тексте не зависит от его предыстории, неверно и статистически, и
лингвистически. Уже давно литераторы заметили, что обычно за
согласной буквой следует гласная, а за гласной согласная. Поэтому
в конце XIX века петербургский математик Марков предложил текст
рассматривать как цепочку символов, где вероятность появления
буквы зависит от предыдущей и только от нее. Таким образом, он
стал рассматривать не вероятности Pj появления в сообщении знака
I, а вероятности Pij появления знака j при условии, что перед ним
стоит знак i. Теория марковских цепей оказалась чрезвычайно
продуктивной для криптографии, и к отдельным ее применениям мы
будем возвращаться позже. Пока же достаточно отметить, что первое
свое опробование она имела при анализе текстов "Евгения Онегина"
самим Андреем Андреевичем Марковым. Объем информации в одном
символе марковской цепи определяется следующей формулой:
H= См. Pi(См. Pij*Ld(Pij))
В этом случае нет противоречия с требованием независимости
знаков, так как знаком здесь считается не отдельный символ, а
биграмма. В приложении приведена таблица вероятности встречи
биграмм в русском техническом тексте по программированию.
Вероятности их представлены десятью классами от 0 до 9 в порядке
возрастания и образуют по средним значениям геометрическую
прогрессию. Справа в этой таблице даны вероятности встречи
отдельных символов. Так, из нее следует, что биграмма АЙ
встречается довольно часто (класс 7), а биграмма ЙА почти совсем
не попадается (класс 0). Среднее количество информации,
приходящееся на один символ, определяемое по этой таблице равно
3.5 Бит, что эквивалентно примерно II буквам в русском алфавите
или возможности сжатия текстов примерно на 57% при их оптимальном
кодировании.
Описанное свойство зависимости буквы в тексте от предыдущей
называется марковостью первого порядка, а независимость букв друг
от друга марковостью нулевого порядка. Естественно, что можно
рассматривать также и марковости высших порядков, например
второго, когда буква зависит от двух предыдущих. Для того, чтобы
оценить порядок марковости в связном тексте, проведем случайное
моделирование, используя сначала вероятности отдельных букв,
потом биграмм, триграмм и так далее. Примеры марковского синтеза
текстов разных порядков марковости от 0 до 4 приведены в
следующей таблице:
0 ПАВЛНТ И ОАБУТ ЕИИЕТК ЖМЕ КСВИДАИВ
1 МОЙ ОГЛЬ ТАМАНУ ЧТЕТОГАНЕ СТА СЛИНА
2 КРУЖБЫ И ОТЧАЕТОНЕИСТАК ПЕХ ЭТОГО 3
3 В ДЕПАРЫ ЧТО НАСТЯМИ РАСПРОИСХОДИН
4 ПОНЯЛ О ГЛУБОКОЙ СИСТЕМ И ДЕЛЕ ВОДЫ
Из нее видно, что увеличение порядка марковости повышает
схожесть отрывка случайного текста с естественным. Повышение
порядка марковости позволяет доуточнить объем информации в
сообщениях, но это очень скользкая тема есть масса разных точек
зрения на нее. Действительно, вводя понятие шенноновской
информации, мы похоронили понятие смысла, который связывает
символы в слога, слога в слова, слова в предложения, а
предложения в сообщение. Практически нет разницы, как сказать
ребенку: "Нужно есть кашу!" или "Надо есть кашу!", а вот
шенноновский подход эти сообщения считает различными. Поэтому
оценка объема информации, содержащейся в сообщении и полученной
по приведенным формулам, явно завышена. А ведь в жизни нередко
бывает, что за целый день так и не узнаешь ничего нового!
Теперь рассмотрим одно приложение знаний свойств
естественного текста сообщения для нужд криптографии. Требуется
по отрезку текста решить, что он из себя представляет,
осмысленное сообщение или последовательность случайных символов.
Ряд шифров приходится на ЭВМ вскрывать перебором ключей, а
вручную просмотреть свыше тысячи фрагментов вдень просто не под
силу, да и скорость мала. Поэтому нужно эту задачу реализовать на
ЭВМ. Пусть предстоит перебрать примерно миллиард ключей на машине
со скоростью тысяча ключей в секунду, на что уйдет около 10 дней.
В этом случае мы рискуем впасть в две крайности. Если будем
чрезмерно осторожны в оценках, то часть несмысловых текстов будет
воспринята как сообщения и передана человеку. Эта ошибка обычно
называется "ложная тревога" или ошибка первого рода. При
количестве таких ошибок свыше 1000 в день человек устанет и может
начать проверять тексты невнимательно. Значит, допускается не
более одной ошибки такого рода на сто тысяч проверок. Далее, если
подойти к проверке поверхностно, то можно пропустить смысловой
текст и по окончании полного перебора его опять придется
повторить. Чтобы не рисковать необходимостью повторения всей
работы, ошибки второго рода или "пропуски сообщения" допустимы
лишь одном случае из ста или тысячи.
Самый простой критерий, который приходит в голову, связан с
использованием алфавита сообщения. Если учитывать, что в нем
могут встретиться лишь знаки препинания, цифры, заглавные и малые
русские буквы, то в тексте сообщения встретится не больше
половины набора кодовой таблицы ASCII. Следовательно, встретив в
тексте недопустимый символ можно уверенно говорить о том, что он
несмысловой - ошибки второго рода почти исключены при нормально
работающем канале связи. Для того, чтобы снизить вероятность
"ложных тревог" до принятой выше величины, требуется, чтобы текст
состоял не менее чем из двадцати трех символов. Дело усложняется,
если используемый код букв не избыточен, как представление в
ASCII русского текста, а содержит ровно столько символов, сколько
их в алфавите. Тогда приходится вести оценку по вероятностям
встречи символов. Чтобы обеспечить принятые вероятности ошибок
первого и второго рода при оценке максимального правдоподобия,
необходимо анализировать уже около сотни символов, а анализ
вероятностей биграмм лишь несколько снижает эту величину. Таким
образом, короткие сообщения при большой длине ключа вообще
невозможно расшифровать однозначно, так как появляющиеся
случайные тексты могут совпадать с осмысленными фразами.
Аналогичную задачу приходится решать и при контроле качества
шифрования. В этом случае, правда, вероятность ложной тревоги
можно повысить, приняв ее не свыше одной тысячной, при той же
самой вероятности пропуска сообщения. А это позволит ограничиться
для проверки лишь 20-30 символами.
Испытания шифров
Начинают взлом шифров обыкновенно со статистических испытаний
текста шифровки, что дает общие данные об их стойкости на
начальном этапе анализа. Так как цель криптографии состоит в том,
чтобы преобразовать открытый текст в шифровку, смысл которой
недоступен незаконному получателю информации, то можно в идеале
представить шифровальную систему, как "черный ящик", вход и выход
которого взаимонезависимы, так как для установления ключа,
согласующего входной текст с шифром, потребуется перебор всех
допустимых вариантов. Если пространство поиска ключа очень велико
и невозможно с помощью имеющихся вычислительных средств проверить
каждый ключ за ограниченное разумное время, то шифр является
вычислительно безопасным. Надлежит сделать следующие важные
замечания.