
- •Светоощущение Методы исследования
- •Виды рефракции глаза
- •Происхождение содружественного косоглазия
- •Принципы лечения содружественного косоглазия
- •Исходы заболеваний роговицы
- •Халазион
- •Метастатические ретиниты
- •Центральный серозный хориоретинит
- •Корковая катаракта
- •Осложнения прогрессирующей катаракты
- •Лечение старческой катаракты
- •Диабетическая ретинопатия
- •Доброкачественные опухоли
- •Злокачественные опухоли
- •Консервативное лечение
- •Хирургическое лечение
- •Раннее выявление и диспансеризация больных глаукомой
- •Основные типы глаукомы
- •Глаукоматозная атрофия (экскавация) зрительного нерва
- •Циркуляция водянистой влаги
- •Регуляция внутриглазного давления
- •Изменения глазного дна при гипертонической болезни
1.ПРАВИЛА ОПРЕДЕЛЕНИЯ ОСТРО ТЫ ЗРЕНИЯ.
Чем меньше деталь может воспринимать глаз, тем выше его острота зрения (visus). Под остротой зрения понимают способность глаза воспринимать раздельно две точки, расположенные друг от друга на минимальном расстоянии.
Величина промежутка между изображениями точек на сетчатке зависит как от расстояния между ними на экране, так и от удалённости их от глаза.
Взаимосвязь между величиной рассматриваемого объекта и удалённостью его от глаза характеризует угол, под которым виден объект. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Острота зрения обратно пропорционально углу зрения. Минимальный угол зрения, позволяющий раздельно воспринимать две точки, характеризуется остроту зрения исследуемого глаза.
В 1909 г. на Интернациональном конгрессе офтальмологов в Неаполе угол зрения в 1 мин был окончательно утвержден в качестве международного эталона нормальной остроты зрения. Однако измерять остроту зрения удобнее не в угловых, а в относительных величинах. За нормальную остроту зрения, равную единице (visus = 1,0), принята обратная величина угла зрения в 1 мин.
Предел различительной способности глаза во многом обусловлен анатомическими размерами фоторецепторов желтого пятна. Так, угол зрения в 1 мин. соответствует на сетчатке линейной величине 0,004 мм, что, например, равно диаметру одной колбочки. При меньшем расстоянии изображение падает на одну или две соседние колбочки и точки воспринимаются слитно. Раздельное восприятие точек возможно только в том случае, если между двумя возбужденными колбочками находится одна интактная.
В связи с неравномерным распределением колбочек в сетчатке различные ее участки неравноценны по остроте зрения. Наиболее высокая острота зрения в области центральной ямки желтого пятна, а по мере удаления от нее она быстро падает.
Для исследования остроты зрения применяют таблицы, содержащие несколько рядов специально подобранных знаков, которые называют оптотипами. В качестве оптотипов используют буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5', а его детали — под углом 1'. Ландольт предложил использовать в качестве оптотипа незамкнутые кольца разной величины.
Каждая таблица состоит из нескольких (обычно 10—12) рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но постепенно уменьшаются от первого ряда к последнему. Таблицы рассчитаны на исследование остроты зрения с расстояния 5 м. На этом расстоянии детали оптотипов 10-го ряда видны под углом зрения 1'. Следовательно, острота зрения глаза, различающего оптотипы этого ряда, будет равна единице. Если острота зрения иная, то определяют, в каком ряду таблицы обследуемый различает знаки. При этом остроту зрения высчитывают по формуле Снеллена: visus= d/ D,
где d — расстояние, с которого проводится исследование;
D — расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).
Изменение величины оптотипов выполнено в арифметической прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка — 0,1, вторая — 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й — 2 единицам.
Для исследования остроты зрения у детей дошкольного возраста используют таблицы, где оптотипами служат рисунки.
В последнее время для ускорения процесса исследования остроты зрения выпускают проекторы оптотипов, что позволяет врачу, не отходя от обследуемого, демонстрировать на экране любые комбинации оптотипов.
Иногда значение остроты зрения выражается в простых дробях, например 5/50, 5/2, где числитель соответствует расстоянию, с которого проводилось исследование, а знаменатель — расстоянию, с которого видит оптотипы этого ряда нормальный глаз. В англоамериканской литературе расстояние обозначается в футах, и исследование обычно проводится с расстояния 20 футов, в связи с чем обозначения visus — 20/40 соответствуют visus — 0,5 и т. п.
Если острота зрения обследуемого меньше 0,1, то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого обследуемого постепенно подводят к таблице. С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов 1-го ряда таблицы и человек с нормальной остротой зрения может различать их с расстояния 50 м.
Если острота зрения обследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: visus= счет пальцев на 10 см. Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: visus= 1/∞ (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят с помощью офтальмоскопа. Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если обследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают visus = proectio lucis certа.
Если глаз обследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такую остроту зрения оценивают как светоощущение с неправильной светопроекцией и обозначают visus = proectio lucis incerta. Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (visus = 0).
Помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию.
Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками.
Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1,2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза отдельно. Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуют, заслоняют щитком. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза.
Для ускорения исследования и во избежание угадывания мелких знаков по сходным очертаниям более крупных определение остроты зрения начинают с показа оптотипов 10-го ряда, демонстрируя их в разбивку, а не подряд.
У людей с пониженным зрением допустимо начинать исследование с крупных знаков, показывая сверху вниз по одному знаку в строке до ряда, где обследуемый ошибается, после чего в разбивку демонстрируют знаки предыдущего ряда.
Остроту зрения оценивают по тому ряду, в котором были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3—0,6, и двух знаков в рядах, соответствующих 0,7—1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная.
Объективные методы определения остроты зрения основаны на появлении непроизвольного оптокинетического нистагма при рассматривании движущихся объектов. В окне нистагмоаппарата движется таблица, состоящая из чередующихся черных и белых полос или квадратов разной величины, угловые размеры которых известны. Наименьшая величина движущихся объектов, вызывающая нистагмоидные движения глаза, и определяет остроту зрения. Появление и исчезновение нистагма определяют с помощью роговичного микроскопа или путем записи на электрокардиографе биопотенциалов глазодвигательных мышц. Ответ задачи 4/50=0,08
Контрольные методы: Симуляция понижения зрения на один или оба глаза встречается часто. Для этой цели применяют следующие контрольные методы.
Исследование остроты зрения по таблицам с различных дистанций можно проводить как по обычным таблицам Головина - Сивцева, так и по специальным разрезным таблицам для контрольного исследования остроты зрения (таблицы с переставленными строками, оптотипы Поляка и др.).
Исследование остроты зрения с помощью изолированных знаков с различных дистанций проводят при полной коррекции в соответствии с данными скиаскопического определения рефракции. Когда больной показывает одну и ту же остроту зрения при чтении знаков различной величины с различных дистанций, то показания являются верными.
Зеркальная проба основана на том, что плоское зеркало дает мнимое изображение объекта на таком расстоянии позади зеркала, на котором он (объект) расположен впереди зеркала, т. е. знаки видны на удвоенном расстоянии. Вначале по таблице или по изолированным знакам без зеркала определяют остроту зрения. Затем врач располагает таблицу позади или рядом с обследуемым так, чтобы знаки отражались в зеркале, висящем напротив. В зеркале знаки видны на удвоенном расстоянии. Если обследуемый читал с расстояния 5 м первую строку таблицы и продолжает ее читать в зеркале, то острота зрения на самом деле равна 0,2, а не 0,1.
Выключить лучше видящий глаз из акта зрения можно приставлением к оправе двух сильных цилиндрических стекол с противоположными знаками, но с совпадающими осями, т. е. нейтрализующих друг друга. Затем незаметно поворачивают ось одного стекла перпендикулярно оси другого цилиндра. Если обследуемый хорошо видит и другим глазом, то он продолжает читать знаки, полагая, что видит, как и прежде, "лучшим" глазом.
Метод Жаваля: обследуемому показывают шрифт, перед которым перпендикулярно строчкам держат карандаш. Больной будет свободно читать, если видит обоими глазами. При зрении одним глазом он должен поворачивать голову, так как карандаш заслоняет некоторые буквы.
Проба Снеллена с цветными стеклами основана на том, что красное стекло делает незаметными на светлом фоне знаки красного цвета, а на черном фоне - знаки зеленого цвета. Зеленое стекло, наоборот, делает неузнаваемыми на белом фоне знаки зеленого цвета, на черном - красного. Если обследуемый, перед "лучшим" глазом которого стоит красное стекло, а перед "худшим" - зеленое, читает красные буквы, то он определяет их "худшим" глазом.
Симуляцию или аггравацию односторонней амблиопии можно выявить также с помощью большого диплоскопа, на барабане которого буквы, расположенные справа, видны левым глазом, а расположенные слева - правым глазом. Полагая, что правым глазом видны буквы в правой части ряда, а левым - в левой, обследуемый читает те из них, которые, по его мнению, он видит "лучшим" глазом и таким образом проявляет симуляцию.
2 ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ.
Полем зрения называется пространство, которое одновременно воспринимается неподвижным глазом. Состояния поля зрения определяет ориентацию в пространстве и позволяет дать функциональную характеристику органа зрения при профессиональном отборе, освидетельствовании военнообязанных, экспертизе трудоспособности, в научных исследованиях и т. д. Изменение поля зрения является ранним и нередко единственным признаком многих глазных болезней. Динамика поля зрения часто служит критерием для оценки течения заболевания и эффективности лечения, а также имеет прогностическое значение. Выявление нарушений поля зрения оказывает существенную помощь в топической диагностике поражения головного мозга в связи с характерными дефектами поля зрения при повреждении разных участков зрительного пути. Изменения поля зрения при поражении головного мозга нередко являются единственным симптомом, на котором базируется топическая диагностика. Все это объясняет практическую значимость изучения поля зрения и вместе с тем требует единообразия методик для получения сопоставляемых результатов.
Размеры поля зрения нормального глаза определяются как границей оптически деятельной части сетчатки, расположенной по зубчатой линии, так и конфигурацией соседних с глазом частей лица (спинка носа, верхний край глазницы). Основными ориентирами поля зрения являются точка фиксации и слепое пятно. Первая связана с областью центральной ямки желтого пятна, а второе — с диском зрительного нерва, поверхность которого лишена светорецепторов.
Исследование поля зрения заключается в определении его границ и выявлении дефектов зрительной функции внутри них. Для этой цели применяют контрольные и инструментальные методы.
Обычно поле зрения каждого глаза исследуют отдельно (монокулярное поле зрения) и в редких случаях одновременно обоих глаз (бинокулярное поле зрения).
Контрольный метод исследования поля зрения прост, не требует применения приборов и отнимает всего несколько минут. Он широко используется в амбулаторной практике и у тяжелобольных для ориентировочной оценки. Несмотря на кажущуюся примитивность, эта методика все же дает достаточно определенную и сравнительно точную информацию, особенно при диагностике гемианопсий.
Сущность контрольного метода заключается в сравнении поля зрения обследуемого с полем зрения врача, которое должно быть нормальным. Поместив больного спиной к свету, врач садится против него на расстоянии 1 м. Закрыв один глаз обследуемого, врач закрывает свой глаз, противоположный закрытому у больного. Обследуемый фиксирует взглядом глаз врача и отмечает момент появления пальца или другого объекта, который врач плавно передвигает с разных сторон от периферии к центру на одинаковом расстоянии между собой и больным. Сравнивая показания обследуемого со своими, врач может установить изменения границ поля зрения и наличие в нем дефектов.
К инструментальным методам исследования поля зрения относятся кампиметрия и периметрия.
Кампиметрия — способ измерения на плоской поверхности центральных отделов поля зрения и определения в нем дефектов зрительной функции. Метод позволяет наиболее точно определить
форму и размеры слепого пятна, центральные и парацентральные дефекты поля зрения — скотомы.
Исследование проводят при помощи кампиметра — матового экрана черного цвета с белой фиксационной точкой в центре. Больной садится спиной к свету на расстоянии 1 м от экрана, опираясь подбородком на подставку, установленную против точки фиксации.
Белые объекты диаметром от 1—5 до 10 мм, укрепленные на длинных стержнях черного цвета, медленно передвигают от центра к периферии в горизонтальном, вертикальном и косых меридианах. При этом булавками или мелом отмечают точки, где исчезает объект. Таким образом отыскивают участки выпадения — скотомы и, продолжая исследование, определяют их форму и величину.
Слепое пятно — проекция в пространстве диска зрительного нерва, относится к физиологическим скотомам. Оно расположено в височной половине поля зрения на 12—18° от точки фиксации. Его размеры по вертикали 8—9° и по горизонтали 5—8°.
К физиологическим скотомам относятся и лентовидные пробелы в поле зрения, обусловленные сосудами сетчатки, расположенными впереди ее фоторецепторов, — ангиоскотомы. Они начинаются от слепого пятна и прослеживаются на кампиметре в пределах 30—40° поля зрения.
Периметрия — наиболее распространенный, простой и достаточно совершенный метод исследования периферического зрения. Основным достоинством периметрии является проекция поля зрения не на плоскость, а на вогнутую сферическую поверхность, концентричную сетчатой оболочке глаза. Благодаря этому исключается искажение границ поля зрения, неизбежное при исследовании на плоскости.
Перемещение объекта на определенное число градусов по дуге дает равные отрезки, а на плоскости их величина неравномерно увеличивается от центра к периферии. На этом принципе Ауберт и Ферстер в 1857 г. создали прибор, получивший название периметра. Основной деталью наиболее распространенного и в настоящее время настольного периметра Ферстера является дуга шириной 50 мм и с радиусом кривизны 333 мм. В середине этой дуги расположен белый неподвижный объект, служащий для обследуемого точкой фиксации. Центр дуги соединен с подставкой осью, вокруг которой дуга свободно вращается, что позволяет придавать ей любой наклон для исследования поля зрения в разных меридианах.
Меридиан исследования определяют по диску, разделенному на градусы и расположенному позади дуги. Внутренняя поверхность дуги покрыта черной матовой краской, а на наружной с интервалами 5° нанесены деления от 0 до 90°. В центре кривизны дуги расположена подставка для головы, где по обе стороны от центрального стержня имеются упоры для подбородка, позволяющие ставить исследуемый глаз в центр дуги. Для исследования используют белые или цветные объекты, укрепленные на длинных стержнях черного цвета, хорошо сливающихся с фоном дуги периметра.
Достоинствами периметра Ферстера являются простота в обращении и дешевизна, а недостатком—непостоянное освещение дуги и объектов, неточный контроль за фиксацией глаза. С его помощью трудно обнаружить небольшие дефекты поля зрения (скотомы).
Значительно больший объем информации о периферическом зрении получают при исследовании с помощью проекционных периметров, действие которых основано на принципе проекции светового объекта на дугу (периметр ПРП) или на внутреннюю поверхность полусферы (сферопериметр Гольдмана). Набор диафрагм и светофильтров, вмонтированных на пути светового потока, позволяет быстро и, главное, дозированно изменять величину, яркость и цветность объектов. В сферопериметре, кроме того, можно дозированно менять яркость освещения фона и исследовать дневное (фотопическое), сумеречное (мезопическое) и ночное (скотопическое) поле зрения. Устройство для последовательной регистрации результатов позволяет сократить время, необходимое для исследования. У лежащих больных поле зрения исследуют при помощи портативного складного периметра.
Методика периметрии. Несмотря на кажущуюся простоту, исследование требует определенного навыка, тщательности исполнения и предварительной подготовки больного к процедуре путем тренировок. Поле зрения исследуют поочередно для каждого глаза. Второй глаз выключают с помощью легкой повязки так, чтобы она не ограничивала поле зрения исследуемого глаза.
Больного в удобной позе усаживают у периметра спиной к свету. Исследование на проекционных периметрах проводят в затемненной комнате. Регулируя высоту подголовника, устанавливают исследуемый глаз в центре кривизны дуги периметра против фиксационной точки.
Для определения границ поля зрения на белый цвет используют объекты диаметром 3 мм, а для измерения дефектов внутри поля зрения — 1 мм. При плохом зрении можно увеличить размеры и яркость объектов. Периметрию на цвета проводят объектами диаметром 5 мм. Перемещая объект по дуге периметра от периферии к центру, отмечают по градусной шкале дуги момент, когда обследуемый констатирует появление объекта. При этом необходимо следить,, чтобы обследуемый не двигал глазом и постоянно фиксировал неподвижную точку в центре дуги периметра. Движение объекта следует проводить с постоянной скоростью 2—3 см/с.
Поворачивая дугу периметра вокруг оси, последовательно измеряют поле зрения в 8—12 меридианах с интервалами 30 или 45°. Увеличение числа меридианов исследования повышает точность периметрии, но вместе с тем прогрессивно возрастает время, затрачиваемое на исследование. Так, для измерения поля зрения с интервалом 1 требуется около 27 ч.
Периметрия одним объектом позволяет дать только качественную оценку периферического зрения, довольно грубо отделяя видимые участки от невидимых. Более точную характеристику поля зрения можно получить с помощью количественной (квантитативной) периметрии. Исследование проводят на сферопериметре двумя объектами разной величины, которые с помощью светофильтров подравнивают так, что количество отраженного ими света становится одинаковым. В норме границы поля зрения (изоптеры), полученные с помощью двух объектов, совпадают. Разница изоптер более чем на 5° указывает на нарушение пространственной суммации в поле зрения. Метод позволяет улавливать патологические изменения поля зрения на ранних стадиях заболевания, когда обычная периметрия не выявляет отклонений от нормы.
При исследовании поля зрения на цвета следует учитывать, что при движении от периферии к центру цветной объект меняет окраску. На крайней периферии в ахроматической зоне все цветные объекты видны примерно на одинаковом расстоянии от центра поля зрения и кажутся серыми. При движении к центру они становятся хроматичными, но сначала их цвет воспринимается неправильно. Так, красный из серого переходит в желтый, затем в оранжевый и, наконец, в красный, а синий — от серого через голубой к синему. Границами поля зрения на цвета считаются участки, где наступает правильное распознавание цвета. Раньше всего узнаются синие и желтые объекты, затем красные и зеленые. Границы нормального поля зрения на цвета подвержены выраженным индивидуальным колебаниям.
Средние границы поля зрения на цвета (в градусах)
Цвет объекта |
Сторона |
|||
височная |
нижняя |
носовая |
верхняя |
|
Синий Красный Зеленый |
70 50 30 |
50 30 25 |
40 25 20 |
40 25 20 |
Наряду с описанными методиками периметрии все шире внедряется статическая периметрия, при которой в заранее обусловленных точках поля зрения (50—100 и более) предъявляют неподвижные объекты переменной величины и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувствительности в различных участках сетчатки.
Автоматическая периметрия. В последнее время созданы автоматические периметры, освобождающие офтальмолога от кропотливой работы и позволяющие избежать случайных результатов. Полусферический периметр управляется портативным компьютером, в который заложено несколько программ исследования. Специальные устройства в соответствии с заданной программой проецируют тест-объект в любую точку полусферы, автоматически меняя его яркость в заданных пределах. Специальное приспособление регистрирует только результаты, полученные при правильном положении неподвижного глаза.
Регистрация результатов периметрии должна быть однотипной и удобной для их сравнения. Результаты измерений заносят на специальные стандартные бланки отдельно для каждого глаза. Бланк состоит из серии концентрических кругов с интервалом между ними 10°, которые через центр поля зрения пересекает координатная сетка, обозначающая меридианы исследования. Последние наносят через 10 или 15°.
Схемы полей зрения принято располагать для правого глаза справа, для левого — слева; при этом височные половины поля зрения обращены кнаружи, а носовые — кнутри.
На каждой схеме принято обозначать нормальные границы поля зрения на белый цвет и на хроматические цвета. Для наглядности разницу между границами поля зрения обследуемого и нормой густо заштриховывают. Кроме того, записывают фамилию обследуемого, дату, остроту зрения данного глаза, освещение, размер объекта и тип периметра.
Границы нормального поля зрения в определенной степени зависят от методики исследования. На них оказывают влияние величина, яркость и удаленность объекта от глаза, яркость фона, а также контраст между объектом и фоном, скорость перемещения объекта и его цвет.
Границы поля зрения подвержены колебаниям в зависимости от интеллекта обследуемого и индивидуальных особенностей строения его лица. Например, крупный нос, сильно выступающие надбровные дуги, глубоко посаженные глаза, приспущенные верхние веки и т. п. могут обусловить сужение границ поля зрения. В норме средние границы для белой метки размером 5 мм2 и периметра с радиусом дуги 33 см (333 мм) следующие: кнаружи — 90°, книзу кнаружи — 90°, книзу — 60°, книзу кнутри — 50°, кнутри — 60°, кверху кнутри — 55°, кверху — 55°, и кверху кнаружи —70°.
В последние годы для характеристики изменений поля зрения в динамике заболевания и статистического анализа используют суммарное обозначение размеров поля зрения, которое образуется из суммы видимых участков поля зрения, исследованного в восьми меридианах: 90 + 90 + 60 + 50 + 60 + 55 + 55 + 70 = 530°. Это значение принимают за норму. При оценке данных периметрии, особенно если отклонение от нормы невелико, следует соблюдать осторожность, а в сомнительных случаях проводить повторные исследования.
Патологические изменения поля зрения. Все многообразие патологических изменений (дефектов) поля зрения можно свести к двум основным видам: 1) сужение границ поля зрения (концентрическое или локальное); 2) очаговые выпадения зрительной функции — скотомы.
Концентрическое сужение поля зрения может быть сравнительно небольшим или простираться почти до точки фиксации — трубочное поле зрения. Концентрическое сужение развивается в связи с различными органическими заболеваниями глаза (Пигментное перерождение сетчатки, невриты и атрофии зрительного нерва, периферические хориоретиниты, поздние стадии глаукомы и др.), однако может быть и функциональным — при неврозах, неврастении, истерии.
Дифференциальный диагноз функционального и органического сужения поля зрения основывается на результатах исследования его границ объектами разной величины и с разных расстояний. При функциональных нарушениях в отличие от органических исследование объектами разной величины заметно не влияет на величину поля зрения.
Определенную помощь оказывает наблюдение за ориентацией больного в окружающей обстановке: при концентрическом сужении органического характера ориентация весьма затруднительна.
Локальные сужения границ поля зрения характеризуются сужением его в каком-либо участке при нормальных размерах на остальном протяжении. Такие дефекты могут быть одно- и двусторонние.
Большое диагностическое значение имеет двустороннее выпадение половины поля зрения — гемианопсия. Гемианопсии делят на гомонимные (одноименные) и гетеронимные (разноименные). Они возникают при поражении зрительного пути в области хиазмы или позади нее в связи с неполным перекрестом нервных волокон в области хиазмы. Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при исследовании поля зрения.
При статической периметрии исследование проводят неподвижным объектом, который предъявляется в какой-либо заданной точке, при этом ступенчато меняется его яркость. Тем самым определяют способность глаза выявлять разницу в освещённости фоновой поверхности (дуги или полусферы периметра) и тест-объекта. Этот показатель называется дифференциальным световым порогом, или порогом светоразличительной чувствительности сетчатки.
Квантитативная периметрия - это трехвариабельная периметрия с изменением трех параметров: размера объекта, освещенности объекта и освещенности общего фона.
Кинетическая периметрия - это периметрия при постоянном механическом перемещении объекта вдоль меридиана, который видит глаз исследуемого от крайней периферии и до центра.
3 ответ 0,06 см. 1 вопрос
4. СУМЕРЕЧНОЕ ЗРЕНИЕ.
В связи с тем что сетчатка животных, ведущих ночной образ жизни, состоит преимущественно из палочек, а дневных животных – из колбочек, Шульце в 1868 году высказал предположение о двойственной природе зрения, согласно которой ночное зрение осуществляется палочками, а дневное – колбочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать цветоощущение; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету.
В зависимости от освещённости можно выделить три типа зрения:
1. Дневное (фототопическое) зрение – осуществляется колбочковым аппаратом глаза при хорошем освещении. Характеризуется высокой остротой и хорошим восприятием цвета.
2. Сумеречное (мезопическое) зрение – осуществляется палочковым аппаратом глаза при слабой степени освещённости. Характеризуется низкой остротой зрения и ахроматичным восприятием предметов.
3. Ночное (скототопическое) зрение - осуществляется палочковым аппаратом глаза при пороговой и надпороговой освещённости. Сводится к светоощущению.
Светоощущение Методы исследования
Способность глаза к восприятию света различной яркости называется светоошущением. Это наиболее древняя функция зрительного анализатора. Осуществляется она палочковым аппаратом сетчатки и обеспечивает сумеречное и ночное зрение. Световая чувствительность глаза проявляется в виде абсолютной световой чувствительности, характеризующейся порогом восприятия света, и различительной световой чувствительности, которая позволяет отличать предметы от окружающего фона на основе неодинаковой яркости.
Исследование светоощущения имеет большое значение в практической офтальмологии. Светоощущение отражает функциональное состояние зрительного анализатора, характеризует возможность ориентации в условиях пониженного освещения, нарушение его является одним из ранних симптомов многих заболеваний глаза.
Абсолютная - световая чувствительность глаза — величина непостоянная, она зависит от степени освещенности. Изменение освещенности вызывает приспособительное изменение порога светоощущения. Изменение световой чувствительности глаза при изменении освещенности называется адаптацией. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. По диапазону светоощущения глаз превосходит все известные в технике измерительные приборы; он может видеть при освещенности порогового уровня и при освещенности, в миллионы раз превышающей его.
Абсолютный порог световой энергии, способный вызвать зрительное ощущение, ничтожно мал.
Различают два вида адаптации: адаптацию к свету при повышении уровня освещенности и адаптацию к темноте при понижении уровня освещенности.
Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интенсивно световая адаптация протекает в течение первых секунд, затем она замедляется и заканчивается к концу 1-й минуты, после чего светочувствительность глаза уже не увеличивается.
Изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20—30 мин, затем нарастание замедляется, и только к 50—60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным. Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.
Исследование световой чувствительности — сложный и трудоемкий процесс, поэтому в клинической практике часто применяют простые контрольные пробы, позволяющие получить ориентировочные данные. Самой простой пробой является наблюдение за действиями обследуемого в затемненном помещении, когда не привлекая его внимания, ему предлагают выполнить простые задания: сесть на стул, подойти к аппарату, взять плохо видимый предмет и т. п.
Можно провести специальную пробу Кравкола. На углы куска черного картона размером 20 х 20 см наклеивают четыре квадратика размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. Цветные квадратики показывают больному в затемненной комнате на расстоянии 40—50 м от глаза. В норме через 30—40 с становится различимым желтый квадрат, потом голубой. При нарушении светоощушения на месте желтого квадрата появляется светлое пятно, голубой квадрат не выявляется.
Для точной количественной характеристики световой чувствительности существуют инструментальные способы исследования. С этой целью применяют адаптометры.
В связи с тем что процесс темновой адаптации зависит от уровня предварительной освещенности, исследование начинают с предварительной световой адаптации к определенному, всегда одинаковому уровню освещенности внутренней поверхности шара адаптометра. Эта адаптация длится 10 мин и создает идентичный для всех обследуемых нулевой уровень. Затем свет выключают с интервалами 5 мин на матовом стекле, расположенном перед глазами обследуемого, освещают только контрольный объект (в виде круга, креста, квадрата). Освещенность контрольного объекта увеличивают до тех пор, пока его не увидит обследуемый. С 5-минутными интервалами исследование продолжают 50—60 мин. По мере адаптации обследуемый начинает различать контрольный объект при более низком уровне освещенности.
Результаты исследования вычерчивают в виде графика, на котором по оси абсцисс откладывают время исследования, а по оси ординат — оптическую плотность светофильтров, регулирующих освещенность увиденного в данном исследовании объекта. Эта величина и характеризует светочувствительность глаза: чем плотнее светофильтры, тем ниже освещенность объекта и тем выше светочувствительность увидевшего его глаза.
Расстройства сумеречного зрения называются гемералопией, или куриной слепотой (так как, действительно, у всех дневных птиц отсутствует сумеречное зрение). Различают гемералопию симптоматическую и функциональную.
Симптоматическая гемералопия связана с поражением фоторецепторов сетчатки и является одним из симптомов органического заболевания сетчатки, сосудистой оболочки, зрительного нерва (пигментная дистрофия сетчатки, глаукома, невриты зрительного нерва и др.). Она, как правило, сочетается с изменениями глазного дна и поля зрения.
Функциональная гемералопия развивается в связи с гиповитаминозом А и сочетается с образованием ксеротических бляшек на конъюнктиве вблизи лимба. Она хорошо поддается лечению витаминами А, В 1, В 2.
Иногда наблюдается врожденная гемералопия без изменений глазного дна. Причины ее неясны. Заболевание носит семейно-наследственный характер.
5. АДАПТАЦИЯ. см 4 –й вопрос.
6. ДЕФЕКТЫ ПОЛЯ ЗРЕНИЯ. Большое диагностическое значение имеет двустороннее выпадение половины поля зрения — гемианопсия. Гемианопсии делят на гомонимные (одноименные) и гетеронимные (разноименные). Они возникают при поражении зрительного пути в области хиазмы или позади нее в связи с неполным перекрестом нервных волокон в области хиазмы. Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при исследовании поля зрения.
Гомонимная гемианопсия характеризуется выпадением височной половины поля зрения в одном глазу и носовой — в другом. Она обусловлена ретрохиазмальным поражением зрительного пути на стороне, противоположной выпадению поля зрения. Характер гемианопсии изменяется в зависимости от локализации участка поражения зрительного пути. Гемианопсия может быть полной при выпадении всей половины поля зрения или частичной. квадрантной. При этом граница дефекта проходит по средней линии, а при квадрантной гемианопсии начинается от точки фиксации. При корковых гемианопсиях сохраняется функция желтого пятна. Могут наблюдаться гемианопическиё скотомы в виде симметричных очаговых дефектов поля зрения.
Причины гомонимной гемианопсии различны: опухоли, кровоизлияния и воспалительные заболевания головного мозга.
Гетеронимная гемианопсия характеризуется выпадением наружных или внутренних половин поля зрения и обусловлена поражением зрительного пути в области хиазмы.
Битемпоральная гемианопсия - выпадение наружных половин поля зрения. Она развивается при локализации патологического очага в области средней части хиазмы и является частым симптомом опухоли гипофиза.
Биназальная гемианопсия - выпадение носовых половин поля зрения — развивается при поражении неперекрещенных волокон зрительного пути в области хиазмы. Это возможно при двустороннем склерозе или аневризмах внутренней сонной артерии и любом другом давлении на хиазму с обеих сторон.
Своеобразные изменения полей зрения обоих глаз при поражении различных участков зрительного пути настолько характерны, что являются важнейшим симптомом в топической диагностике заболеваний головного мозга.
Очаговый дефект поля зрения, не сливающийся с его периферическими границами, называется скотомой. Скотома может отмечаться самим больным в виде тени или пятна. Такая скотома называется положительной. Скотомы, не вызывающие у больного субъективных ощущений и обнаруживаемые только с помощью специальных методов исследования, носят название отрицательных.
При полном выпадении зрительной функции в области скотомы она обозначается как абсолютная в отличие от относительной скотомы, при которой восприятие объекта сохраняется, но он виден недостаточно отчетливо. Следует учесть, что относительная скотома на белый цвет может быть в то же время абсолютной на другие цвета.
Скотомы могут быть в виде круга, овала, дуги, сектора и иметь неправильную форму. В зависимости от локализации дефекта в поле зрения по отношению к точке фиксации различают центральные, перицентральные, парацентральные, секторальные и различного вида периферические скотомы.
Наряду с патологическими в поле зрения отмечаются физиологические скотомы. К ним относятся слепое пятно и ангиоскотомы. Слепое пятно представляет собой абсолютную отрицательную скотому овальной формы.
Физиологические скотомы могут существенно увеличиваться. Увеличение размеров слепого пятна является ранним признаком некоторых заболеваний (глаукома, застойный диск зрительного нерва, гипертоническая болезнь и др.), и измерение его имеет большое диагностическое значение.
7 ГЕМИАНОПСИИ. См вопрос 6
8 РЕФРАКЦИЯ ГЛАЗА.
Светопроводящий отдел составляют прозрачные среды глаза: роговица, влага передней камеры, хрусталик и стекловидное тело. Световоспринимающим отделом является сетчатая оболочка. Изображение предметов внешнего мира воспроизводится на сетчатке с помощью оптической системы светопроводящих сред. Лучи света, отраженные от рассматриваемых предметов, проходят через четыре преломляющие поверхности. Притом каждая из них отклоняет луч от первоначального направления. Формируется перевернутое изображение рассматриваемого предмета.
Учение о рефракции основано на законах оптики , характеризующих распространение света в различных средах.
Прямая линия, проходящая через центры кривизны всех преломляющих поверхностей, является главной оптической осью. Лучи света, падающие параллельно этой оси, после преломления собираются в главном фокусе системы. Параллельные лучи идут от бесконечно удаленных предметов, следовательно, главным фокусом оптической системы называется то место на продолжении оптической оси, где образуется изображение бесконечно удаленных предметов.
Расходящиеся лучи, идущие от предметов, расположенных на любом конечном расстоянии, будут собираться уже в других, дополнительных фокусах. Все они будут располагаться дальше главного фокуса, так как для фокусировки расходящихся лучей требуется дополнительная преломляющая сила, тем большая, чем сильнее расхождение падающих лучей, т. е. чем ближе к линзе источник этих лучей.
В сложной оптической системе фокусное расстояние измеряется не от вершины какой-либо преломляющей системы, а от условной главной плоскости этой системы, которая вычисляется математически из величин преломляющей силы каждой преломляющей поверхности и расстояния между ними.
Расстояние от главной плоскости до главного фокуса называется главным фокусным расстоянием оптической системы (F).
Фокусное расстояние характеризует оптическую силу системы. Чем сильнее преломляет система, тем короче ее фокусное расстояние. Для измерения оптической силы линз используют величину, обратную фокусному расстоянию, которая называется диоптрией. За одну диоптрию (дптр) принимается преломляющая сила линзы с фокусным расстоянием 1 м. Зная фокусное расстояние линзы (F), нетрудно определить ее рефракцию (D) по формуле:
D=1 м / F м или D=100 см / F см
Зная рефракцию линзы, можно вычислить ее фокусное расстояние, пользуясь той же формулой.
Для характеристики оптической системы глаза необходимо знать радиусы кривизны передней и задней поверхностей роговицы и хрусталика, толщину роговицы и хрусталика, глубину передней камеры, длину анатомической оси глаза и показатели преломления прозрачных сред глаза.
Измерение этих величин (кроме показателей преломления) можно выполнить на живом глазу. Методы, предложенные для этой цели, делят на три группы: оптические, рентгенологический и ультразвуковой. С помощью оптических методов производят непосредственное измерение отдельных элементов преломляющего аппарата, длину оси определяют путем вычислений. Рентгенологический и ультразвуковой методы позволяют непосредственно измерить длину оси глаза.
Для упрощения расчетов в области физиологической оптики, связанных с преломлением света в глазу, рядом исследователей предложен так называемый схематический глаз. Наилучшим является схематический глаз Гулльстранда.
Схематический глаз Гулльстранда состоит из шести преломляющих поверхностей (передняя и задняя поверхности роговицы, передняя поверхность хрусталика, передняя и задняя поверхности хрусталикового ядра, задняя поверхность хрусталика); они разграничивают семь сред: воздух, роговицу, влагу передней камеры, передние и задние кортикальные слои хрусталика, ядро хрусталика и стекловидное тело. Преломляющая сила схематического глаза Гулльстранда равна 58,64 дптр. На роговицу приходится 43,05 дптр, на хрусталик в покое, без аккомодации — 19,11 дптр.
Схематический глаз используют при решении многих задач физиологической оптики, но в ряде случаев для получения данных, нужных для клинических целей, достаточно ещё более упрощенной схемы. Оптическая модель глаза, в которой сложная система схематического глаза сведена к простой оптической системе, носит название редуцированного глаза.
В редуцированном глазу приняты единый усредненный показатель преломления, одна усредненная преломляющая поверхность и одна главная плоскость. Наиболее совершенной моделью является редуцированный глаз Вербицкого, константы которого следующие: показатель преломления 1,4, радиус кривизны преломляющей поверхности 6,8 мм, радиус поверхности сетчатки 10,2 мм, длина глаза 23,4 мм.
В последние годы упрощенные схемы расчета оптических элементов приобретают большое практическое значение, например, для расчета фокуса оптической системы глаза при оптико-реконструктивных операциях.