Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
dif.ur(horoshaya metodichka).doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.14 Mб
Скачать

§ 7. Теорема существования и единственности решения дифференциального уравнения Условие Липшица

Р ассмотрим функцию , определенную и непрерывную в прямоугольнике К:

Определение. Если для любого и любых двух значений и переменной :

, существует такое, не зависящее от х число , что выполнено неравенство: (1), то говорят, что функция в области К удовлетворяет условию Липшица с постоянной L.

Замечания:

1. Если в области К имеет непрерывную частную производную , то всегда найдется такое L, что условие (1) будет выполнено. Действительно, тогда по формуле Лагранжа (2),

– лежит между и .

В силу непрерывности в К и замкнутости области К, в К ограничена, т.е. , где L – некоторая константа. В этом случае, в частности, за L можно принять .

2. Условие Липшица (1) более слабое, чем существование частной производной , так как оно может быть выполнено и в том случае, когда существует не всюду в К.

Примеры:

  1. Определить, удовлетворяет ли условию Липшица функция заданная в прямоугольнике ?

Р ешение.

Следовательно, за L можно принять и условие Липшица выполнено. Тот же результат получим, если используем замечание 1. Действительно, функция имеет непрерывную , поэтому за L можно принять .

Таким образом, заданная функция удовлетворяет условию Липшица в любом конечном прямоугольнике.

  1. То же самое для функции .

Это значит, что в прямоугольнике K условие выполнено с .

Здесь константа L не зависит от размеров прямоугольника, следовательно, условие Липшица удовлетворяется на всей плоскости.

  1. То же для функции

В то же время не существует при , т.к.

.

Теорема существования и единственности

Теорема (Коши)

Пусть удовлетворяет условиям:

1) непрерывна в прямоугольнике K: , тогда в K ограничена, то найдется такое (3)

  1. удовлетворяет в K условию Липшица

(4)

Т огда в интервале: (5)

дифференциальное уравнение (6)

обладает единственным решением , таким, что .

Замечания:

  1. Для существования решения достаточно непрерывности в K.

  2. Для единственности решения требуется выполнение условия Липшица (4), которое может быть заменено более жестким условием существования в K непрерывной .

  3. При доказательстве теоремы рассматривается задача Коши: , (7)

которая заменяется эквивалентным ей интегральным уравнением . (8)

Затем к уравнению (8) применяется так называемый метод последовательных приближений Пикара. Он состоит в том, что строится последовательность функций сходящаяся к решению уравнения (8). Функции строятся по следующему правилу: за исходное приближение принимается , а следующие вычисляются по формуле: . (9)

Это есть рабочая формула для построения приближенного решения по методу последовательных приближений.

  1. Д опустим интегральная кривая построена на интервале . Возьмем конечную точку за центр нового прямоугольника и продолжим решение вправо. Поступая так, каждый раз, можно продолжить решение (интегральную кривую) до самой границы области G задания функции (в предположении, что G конечна и замкнута).

Мы построили интегральную кривую, проходящую через точку . Можно выбрать любую другую точку и опять получим единственную интегральную кривую. Таким образом, область G как бы состоит из интегральных кривых.

Т еорема. Если определена и непрерывна на всей плоскости и удовлетворяет условию Липшица во всякой конечной области этой плоскости, то всякая интегральная кривая при возрастании или продолжима до или имеет вертикальную асимптоту при конечном значении , т.е. интегральная кривая не может окончится где-то внутри области.

Пример. .

Здесь удовлетворяет всем условиям теоремы. Решением задачи Коши будет . Решение имеет вертикальные асимптоты .

  1. Те точки области G, в которых функция неопределена или перестает быть непрерывной или не выполняется условие Липшица, называются особыми точками уравнения . Таким образом, особые точки это те точки, в которых нарушаются условия теоремы существования и единственности. Особые точки могут быть изолированными, а могут составлять и целые области.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]