
- •Значение средств криптографической защиты.
- •3. Шифрование в каналах связи компьютерной сети.
- •4. Достоинства блочных шифров.
- •Рекомендации Шеннона для шифрования двоичной последовательности некой фиксированной длины n.
- •Методы анализа шифров (универсальные, специальные, частные)
- •Типовые элементы современных шифров: Перестановка размера n, q - ичная подстановка размера n, Усеченная q - ичная подстановка размера n X m , q- ичная n- разрядная память объема m
- •Примеры современных шифров: des ( схема, математические операции);Режимы работы des.
- •Примеры современных шифров: модификации des; проблема последнего блока des – способы решения; криптоанализ des.
- •Примеры современных шифров. Гост 28147-89 (Стандарт ссср и рф, 1989 год), отличия от des , алгоритм. Режимы работы алгоритма гост.
- •Параметры
- •Расширение ключа
- •Шифрование
- •26. Использование маркантов или производных ключей
- •1. Ключ ka для шифрования сообщений входящих к абоненту а должен изготовить сам абонент а. Он же изготавливает ключ ka-1 - для расшифрования данных сообщений.
- •2. Ключ ka рассылается всем желающим, отправлять сообщения абоненту a, ключ ka-1 держится в секрете.
- •3. Ключ ka-1 не восстанавливается по ключу ka.
- •51. Методы анализа криптопротоколов
- •52. Классификация протоколов аутентификации. Типы аутентификации
- •Основные атаки на протоколы аутентификации. Типы атак и пути их обхождения.
- •Простая аутентификация.
- •Использование односторонних функций для проверки паролей
- •Строгая аутентификация.
- •Строгая аутентификация, основанная на симметричных алгоритмах. Протоколы с симметричными алгоритмами шифрования.
- •Общая структура доказательств с нулевым разглашением
- •75.Криптосистемы на эллиптических кривых.
Значение средств криптографической защиты.
Одним из основных средств защиты информации в ЭВМ являются криптографические средства. Они имеют своей задачей защиту информации при передаче по линиям связи, хранении на магнитных носителях, а так же препятствуют вводу ложной информации (имитостойкость).
Основные задачи криптографии
Криптографические методы защиты информации используются как самостоятельно, так и в качестве вспомогательного средства для решения задач, не имеющих, на первый взгляд, отношения к криптографии. Интересы криптографии сосредоточены на двух задачах:
обеспечение конфиденциальности при хранении и передаче информации, когда никто, кроме владельца информации и имеющих к ней доступ лиц, не сможет узнать содержание информации, передаваемой по каналам закрытой связи или хранящейся в базе данных;
обеспечение достоверности информации. При обмене корреспонденцией должна быть уверенность в подлинности полученных сообщений, в том, что сообщение не искажено и пришло от адресата, подписавшего его.
Средства криптографической защиты применяются в различных ситуациях и позволяют решить много практических задач. В шифрованном виде хранятся не только смысловые сообщения, но и системная информация (в вычислительной системе), необходимая для разграничения доступа, журнал аудита – результаты текущего наблюдения за действиями пользователей и т.п. Порой стойкость против имитации, как говорят, имитостойкость, важнее, чем сохранение содержания сообщения в тайне.
Классификация основных методов криптографического закрытия информации
Подстановка (замена)
Одноалфавитная - прямая замена символов шифруемого сообщения другими буквами того же самого или другого алфавита.
Многоалфавитная одноконтурная обыкновенная.Для замены символов используются несколько алфавитов, причем смена алфавитов проводится последовательно и циклически: первый символ заменяется на соответствующий символ первого алфавита, второй - из второго алфавита, и т.д. пока не будут исчерпаны все алфавиты. После этого использование алфавитов повторяется.
Многоалфавитная одноконтурная монофоническая.В монофонической подстановке количество и состав алфавитов выбирается таким образом, чтобы частоты появления всех символов в зашифрованном тексте были одинаковыми. При таком положении затрудняется криптоанализ зашифрованного текста с помощью его статистической обработки. Выравнивание частот появления символов достигается за счет того, что для часто встречающихся символов исходного текста предусматривается большее число заменяющих символов, чем для редко встречающихся.
Многоалфавитная многоконтурная. Многоконтурная подстановка заключается в том, что для шифрования используются несколько наборов (контуров) алфавитов, используемых циклически, причем каждый контур в общем случае имеет свой индивидуальный период применения. Частным случаем многоконтурной полиалфавитной подстановки является замена по таблице Вижинера, если для шифрования используется несколько ключей, каждый из которых имеет свой период применения.
Перестановка
Простая. Выбирается размер блока шифрования в n столбцов и m строк и ключевая последовательность, которая формируется из натурального ряда чисел 1,2,...,n случайной перестановкой.
Усложненная по таблице. При усложнении перестановки по таблицам для повышения стойкости шифра в таблицу перестановки вводятся неиспользуемые клетки таблицы. Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования.
Усложненная по маршрутам. Стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используются несколько различных маршрутов.
Гаммирование. Суть метода состоит в том, что символы шифруемого текста последовательно складываются с символами некоторой специальной последовательности, называемой гаммой. Иногда такой метод представляют как наложение гаммы на исходный текст, поэтому он получил название "гаммирование". Стойкость гаммирования однозначно определяется длиной периода гаммы. При использовании современных ПСЧ реальным становится использование бесконечной гаммы, что приводит к бесконечной теоретической стойкости зашифрованного текста.
С конечной короткой гаммой
С конечной длинной гаммой
С бесконечной гаммой
Аналитические преобразования. Достаточно надежное закрытие информации может обеспечить использование при шифровании некоторых аналитических преобразований. Например, можно использовать методы алгебры матриц - в частности умножение матрицы на вектор.
Матричные
По особым зависимостям
Комбинированные. Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования, т.е. последовательное шифрование исходного текста с помощью двух или более методов.