
- •1.Структура и определение энергетической системы.
- •2.Особенности работы электроэнергетических систем.
- •3.Системы электроснабжения (Определение и особенности).
- •4.Этапы развития электроэнергетики в России.
- •5.Этапы развития электроэнергетики в Волгоградской области.
- •6.Динамика роста производства электроэнергии в России и в мире.
- •7.Административное-хозяйственное управление еэс России.
- •8.Основные задачи электроэнергетики.
- •9.Показатели качества электроэнергии.
- •10.Отклонение частоты (Определение и нормы по гост 13109-97)
- •11. Отклонения напряжения. (Определение и нормы по гост 13109-97)
- •12) Колебания напряжения (Определение и нормы по гост 13109-97)
- •14)Несимметрия напряжения (Определение и нормы по гост 13109-97)
- •15)Провал напряжения (Определение и нормы по гост 13109-97)
- •16)Временные перенапряжения (Определение и нормы по гост 13109-97)
- •17) Импульс напряжения(Определение и нормы по гост 13109-97)
- •19) Электроприемники I категории надежности электроснабжения.
- •20) Электроприемники II категории надежности электроснабжения
- •21) Электроприемники III категории надежности электроснабжения
- •22) Электроприемники категории особой надежности электроснабжения
- •23)Экономичность электроснабжения.
- •24.Статистическая и динамическая устойчивость.
- •25.Резерв мощности ээс (Виды и их определения).
- •26. Виды источников электроэнергии.
- •27)Фазы производства электроэнергии.
- •28.Классификация электростанций по основным признакам.
- •29.Классификация электростанций по виду теплового двигателя и по назначению.
- •30. График нагрузки энергисистемы.
- •31. Классификация электростанций по виду теплового двигателя и по назначению.
- •32.Основное электрооборудование электростанций (типы и назначение).
- •33.Типовая схема электростанции со сборными шинами генераторного напряжения.
- •34.Классификация турбогенераторов.
- •35.Классификация гидрогенераторов.
- •36.Конструкция синхронных генераторов.
- •37.Системы возбуждения синхронных генераторов.
- •38.Требования к системам возбуждения синхронных генераторов.
- •39)Электромашинные системы возбуждения.
- •40). Система самовозбуждения.
- •41)Бесщеточные системы возбуждения.
- •42)Пусковые режимы работы синхронных генераторов.
- •43)Начальный разворот синхронного генератора.
- •44)Синхронизация синхронных машин (способы и их определения)
- •45)Характеристики генераторов работающих на автономную сеть.
- •46)Характеристики холостого хода генератора.
- •48)Внешние характеристики синхронных генераторов.
- •49) Регулировочные характеристики синхронных генераторов
- •50)Условия выполнения синхронизации генераторов с цепью бесконечной.
- •51) Точная синхронизация синхронного генератора с сетью бесконечной мощности
- •52) Самосинхронизация синхронного генератора с сетью бесконечной мощности
- •53) Угловая характеристика синхронных генераторов
- •54) Распределительные устройства электростанций (классификация и основные характеристики)
- •55) Распределительные устройства с одной системой сборных шин (достоинства и недостатки)
- •56) Распределительные устройства с двумя системами сборных шин (достоинства и недостатки)
- •57) Распределительные устройства собственных нужд электростанций (виды и особенности)
- •58) Общие сведения об электроэнергетических системах
- •59) Линии электропередачи переменного тока
- •60) Линии электропередачи постоянного тока
- •61) Статические характеристики нагрузок систем электроснабжения
- •62) Измерение активной и реактивной мощности по схеме Арона
- •63) Поперечная компенсация реактивной мощности в системах электроснабжения
- •64) Продольная компенсация реактивной мощности в системах электроснабжения
- •65) Прямой и реакторный пуск асинхронного электродвигателя
- •66) Самозапуск электродвигателя
- •68) Проверка сети электроснабжения на самозапуск электродвигателя
- •69) Последовательность включения синхронного генератора на параллельную работу с электрической системой бесконечной мощности по способу самосинхронизации
- •71) Устройство автоматической самосинхронизации генератора с электрической системой бесконечной мощности
- •72) Автоматическое устройство точной синхронизации генератора с электрической системой бесконечной мощности
- •73) Система (сеть ) бесконечной мощности (определения и основные составляющие)
- •74) Регулирования напряжения в системах электроснабжения
- •75) Баланс активной и реактивной мощности в энергосистеме
36.Конструкция синхронных генераторов.
Синхронные генераторы (СГ), предназначенные для преобразования механической энергии паровой, газовой или гидравлической турбины, вращающей ротор СГ, в электрическую энергию, имеют неподвижную часть, называемую статором. Статор синхронной машины по конструкции не отличается от статора асинхронного двигателя. В пазах статора размещается трехфазная, двухфазная или однофазная обмотки. Заметное отличие имеет ротор, который принципиально представляет собой постоянный магнит или электромагнит. Подвижная часть генератора (ротор) может быть выполнена с сосредоточенной обмоткой. В этом случае ротор и сам генератор называются явнополюсными. Если обмотка ротора является распределенной, ротор и генератор называются неявнополюсными. Это налагает особые требования на геометрическую форму ротора. Любой магнит имеет полюса, число которых может быть два и более. Быстроходными бывают, как правило, турбогенераторы. Количество пар магнитных полюсов у них равно единице. Чтобы такой генератор вырабатывал электрический ток стандартной частоты f = 50 Гц, его необходимо вращать с частотой На гидроэлектростанциях вращение ротора зависит от движения водяного потока. Но и при медленном вращении такой генератор должен вырабатывать электрический ток стандартной частоты f = 50 Гц. Поэтому для каждой гидроэлектростанции конструируется свой генератор, на определенное число магнитных полюсов на роторе. Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, кото-рое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока. Синхронные генераторы, вращаемые паро- и газо¬выми турбинами, назы¬ваются турбо¬генера-торами, а враща¬емые гидрав¬лическими тур¬бинами — гидро¬генера¬торами.
37.Системы возбуждения синхронных генераторов.
Автоматический регулятор возбуждения: устройство, являющееся составной частью системы возбуждения и действующее на возбудитель синхронной машины с целью поддержания напряжения в электрической сети на заданном уровне.
Возбудитель: устройство, являющееся составной частью системы возбуждения, предназначенное для питания постоянным током обмотки возбуждения турбогенератора (гидрогенератора, синхронного компенсатора) и представляющее электрическую машину постоянного тока либо полупроводниковый преобразователь в комплексе с источником питания переменного тока.
Системой возбуждения синхронной машины называется совокупность машин, аппаратов и устройств, предназначенных для питания ее обмотки возбуждения постоянным током if л регулирования величины этого тока. Системы возбуждения с генераторами постоянного тока. Классическая система возбуждения синхронных машин, широко используемая и в настоящее время, состоит из возбудителя в виде генератора параллельного возбуждения на общем валу с синхронной машиной (см. рис. 34-1). У тихоходных машин мощностью до Ра яй 5000 кет для уменьшения веса и стоимости возбудителей последние иногда соединяют с валом синхронной машины с помощью клиноременной передачи.
Гидрогенераторы также обычно имеют возбудитель на одном валу с генератором. Однако при этом у мощных тихоходных генераторов с ин = 60 -J- 150 об/мин размеры и стоимость возбудителя в связи со значительной его мощностью и тихо-ходностью получаются большими. Кроме того, тихоходные возбудители вследствие своих больших размеров обладают большой электромагнитной инерцией, что снижает эффективность автоматического регулирования и форсировки возбуждения. Поэтому применяют также системы возбуждения в виде отдельного быстроходного агрегата (п = 750 -т- 1500 об/мин), состоящего из асинхронного двигателя и генератора постоянного тока. Асинхронный двигатель при этом получает питание от специального вспомогательного синхронного генератора, расположенного на одном валу с главным гидрогенератором, а в некоторых случаях — с шин собственных нужд гидростанции или с выводов главного гидрогенератора. В последнем случае возбудительный агрегат подвержен влиянию аварий в энергосистеме (короткие замыкания и пр.), и поэтому для повышения его надежности приводные асинхронные двигатели выполняют с повышенным максимальным моментом (Мт :> 4 Мн), а иногда эти агрегаты снабжают также маховиками. В виде отдельных возбудительных агрегатов выполняются также агрегаты резервного возбуждения электростанций, служащие для резервирования собственных возбудителей- генераторов в случае аварий и неисправностей. Применяются также некоторые разновидности систем возбуждения с машинами постоянного тока. Например, мощные возбудители крупных машин иногда имеют подвозбудители (рис 40-1), которые служат для возбуждения возбудителя. Система возбуждения с генераторами переменного тока и выпрямителями. Как указывалось выше, для мощных гндро- и турбогенераторов системы возбуждения с возбудителями постоянного тока, находящимися на одном валу с генераторами, становятся неэкономичными и даже невыполнимыми. В этих случаях применяются системы возбуждения с генераторами переменного тока и управляемыми или неуправляемыми выпрямителями (рис. 40-3). Тиристорная система возбуждения: система возбуждения турбогенератора (гидрогенератора, синхронного компенсатора), в которой переменный ток источника питания преобразуется в постоянный ток возбуждения синхронной машины тиристорными преобразователями.