
- •1.Механизм проводимости биологических объектов.
- •2.Эдс поляризации. Уравнение Гольдмана.
- •3. Уравнение Нернста. Стандартный электродный потенциал.
- •4. Электрические явления на участке электрод - кожа.
- •5. Импедансометрические измерения.
- •Алгебраическая форма
- •Тригонометрическая форма
- •9. Импеданс Вартбурга.
- •10. Конструкция электродов.
- •Приготовление микропипетки
- •Заполнение электрода
- •Подключение и контроль
- •13. Операционный усилитель.
- •Обозначения
- •Основы функционирования Питание
- •Простейшее включение оу
- •Идеальный операционный усилитель
- •Простейший неинвертирующий усилитель на оу
- •Отличия реальных оу от идеального
- •Параметры по постоянному току
- •Параметры по переменному току
- •Нелинейные эффекты
- •Ограничения тока и напряжения
- •Классификация оу По типу элементной базы
- •По области применения
- •Другие классификации
- •19. Усилитель-ограничитель на оу.
- •25. Устройства выборки-хранения.
- •27. Генераторы синусоидальных сигналов на оу.
- •29. Цифроаналоговый преобразователь с суммированием токов. Основные понятия и общие способы реализации
- •Способы реализации цап с взвешенным суммированием токов
- •30. Цап с цепочкой r-2r
- •1) Использование матрицы r-2r в качестве параллельного цап.
- •2)Реализация цап по схеме r-2r на микроконтроллере.
- •Ацп последовательного приближения
- •32. Параллельный ацп. И др. Типы ацп
- •Параллельный ацп
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •40. Фильтры на пассивных элементах. Классификация фильтров.
- •Фильтр на сосредоточенных элементах
- •Фильтры с распределёнными параметрами (фильтры свч)
- •Типы фильтров
- •Нормированные полиномы Баттерворта
- •Максимальная гладкость
- •Спад характеристики на высоких частотах
- •Проектирование фильтра
- •Топология Кауэра
- •Фильтр Чебышева I рода
- •Полюса и нули
- •Передаточная функция
- •Групповая задержка
- •Временны́е характеристики
- •Фильтр Чебышева II рода
- •Полюса и нули
- •Передаточная функция
- •Групповая задержка
- •Фазовые характеристики
- •Временные характеристики
- •Принцип действия
- •Классификация
- •Некоторые виды химических источников тока Гальванические элементы
- •Электрические аккумуляторы
- •Топливные элементы
- •Устройство
- •Лассификация реле
- •Особенности работы
- •Преимущества термопар
- •Недостатки
- •Принципы реализации
- •Тензометрический метод
- •Пьезорезистивный метод
- •Ёмкостной метод
- •Резонансный метод
- •Индуктивный метод
- •Ионизационный метод
- •Пьезоэлектрический метод
- •Регистрация сигналов датчиков давления
- •49. Пьезоэффект.
- •Использование пьезоэффекта в технике
- •Принцип действия
- •Эквивалентная схема
- •Применение
- •Преимущества перед другими решениями
- •Недостатки
1.Механизм проводимости биологических объектов.
Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков. В межклеточной жидкости с максимальным содержанием ионов удельная электропроводность достаточно высока и составляет 1 См • м-1. Напротив, в цитозоле, содержащем органеллы и крупные белковые молекулы, она понижается до 0,003 См • м-1. Удельная электропроводность плазмолеммы и внутриклеточных мембран еще ниже (1-3) • 10-5 См • м-1. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1). Электропроводность кожи зависит от толщины состояния дериватов и содержания воды. Сухая кожа является плохим проводником электрического тока, тогда как влажная хорошо проводит его. В связи с тем, что постоянный ток распространяется по пути наименьшего сопротивления, то состояние электропроводности тканей и тесно с ней связанная поляризация существенно сказываются на происходящих в организме изменениях при гальванизации (см.), лекарственном электрофорезе (см. Электрофорез лекарственных веществ) и других электротерапевтических методах. Значительно более сложный характер носит электропроводность клеток и тканей для переменного тока. Так как биологические объекты обладают как проводимостью, так и емкостью, то они будут характеризоваться как активным, так и реактивным сопротивлением, в сумме составляющими импеданс объекта. Импеданс биологической ткани зависит от частоты тока: при увеличении частоты реактивная составляющая импеданса уменьшается. Частотно-зависимый характер емкостного сопротивления является одной из причин зависимости импеданса биологических объектов от частоты тока, т.е. дисперсии импеданса. Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода действия переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону, больше времени релаксации какого-либо вида поляризации, то поляризация достигает своего максимального значения и вещество будет характеризоваться постоянными значениями диэлектрической проницаемости и проводимости. До тех пор, пока полупериод переменного тока больше времени релаксации, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость снова станут постоянными величинами. При изучении частотных зависимостей сопротивления и емкости биологических объектов было обнаружено три области дисперсии: ?, ? и ?. ?-Дисперсия занимает область низких частот, примерно до 1 кГц. Ее объясняют поверхностной поляризацией клеток. По мере увеличения частоты переменного тока эффект поверхностной поляризации уменьшается, что проявляется как уменьшение диэлектрической проницаемости и сопротивления ткани. B-Дисперсия занимает более широкую область частот: 103-107 Гц. В прошлом для объяснения дисперсии диэлектрической проницаемости и сопротивления в данной области обращались к теориям дипольной и макроструктурной поляризации. В настоящее время для объяснения ?-дисперсии развивается электрохимическая (электролитическая) теория поляризации биологических объектов. Ценность данного подхода состоит в том, что он позволяет учитывать при описании электрических свойств биологических тканей клеточную проницаемость и наличие ионных потоков через мембрану. Y-Дисперсия диэлектрической проницаемости и проводимости наблюдается на частотах выше 1000 МГц. Уменьшение диэлектрической проницаемости в данном диапазоне обусловлено ослаблением эффектов поляризации, вызываемой диполями воды. Общая картина частотной зависимости электрических параметров сохраняется для всех тканей. Некоторые индивидуальные особенности ее определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках, содержанием свободной воды и др. Изменение состояния клеток и тканей, их возбуждение, изменение интенсивности метаболизма и других функций клеток приводит к изменению электропроводности биологических систем. В этой связи изменение электропроводности используют для получения информации о функциональном состоянии биологических тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм различных факторов, для оценки кровенаполнения сосудов органов и тканей и др. Дисперсия электрических свойств тканей, обусловленная состоянием заряженных частиц, играет важную роль в действии на организм лечебных физических факторов, в особенности переменных токов, электромагнитных полей и их составляющих. Они определяют их проникающую способность, селективность и механизмы поглощения энергии факторов, первичные механизмы их действия на организм.