
- •Розділ1 - основи гідравліки і насоси
- •Вступ. Основи гідростатики
- •Зміст і завдання дисципліни, порядок вивчення, зв’язок з іншими дисциплінами
- •Паливо-енергетичні ресурси Ураїни
- •Характеристики гідравліки як науки та її значення
- •Фізичні властивості рідини. Ідеальна і реальна рідина
- •Особливі властивості рідини
- •Гідростатичний тиск. Вимірювання гідростатисного тиску
- •Основне рівняння гідостатики. Закон Архімеда
- •Практичне застосування закону Паскаля
- •Основні висновки:
- •Контрольні питання:
- •Основи гідродинаміки
- •Основні поняття
- •Рівняння Бернулі для елементарної струмини ідеальної і реальної рідини. Рівняння Бернулі для потоку реальної рідини
- •Режими руху рідини. Число Рейнольдса
- •Втрати напору
- •Гідравлічний удар у трубах
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Призначення, класифікація і галузі застосування насосів
- •Подача, напір, потужність і ккд носіїв
- •Принцип дії насосів
- •Явище кавітації
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Розділ 2 - основи технічної термодинаміки
- •Основні поняття і визначення в технічній термодинаміці
- •Основні поняття і визначення
- •Робоче тіло, його основні параметри
- •Термодинамічна система
- •Термодинамічний процес
- •Основні газові закони
- •Універсальна газова стала
- •Основні висновки:
- •Контрольні питання:
- •Прочитати:
- •Суміш ідеальних газів. Теплоємність газів і газових сумішей
- •Поняття про газову суміш. Закон Дальтона
- •Склад суміші в об’ємних і масових частках
- •Визначення парціального тиску, парціального об’єму,уявної молекулярної маси компонентів та універсальної газової сталої.
- •Поняття про теплоємність. Масова, об’ємна і молярна теплоємність, залежність між ними
- •Теплоємність при сталому об’ємі та тиску
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Перший закон термодинаміки
- •1. Зміст закону та його формулювання
- •2. Внутрішня енергія та її властивості. Робота газу, її визначення. Ентальпія і ентропія газу.
- •Перший закон термодинаміки для потоку (відкрита система)
- •Загальні висновки:
- •Порядок і методи дослідження термодинамічних процесів. Ізохорний, ізобарний, ізотермічний, адіабатний процеси та їх зображення в кординатах pv, ts
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Другий закон термодинаміки
- •Зміст закону і його формулювання
- •2. Цикл Карно
- •3. Термічний ккд. Холодильний коефіцієнт
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Водяна пара і вологе повітря
- •Водяна пара як робоче тіло
- •Особливості пароутворення при постійному тиску
- •Параметри водяної пари
- •Насичене, ненасичене, перенасичене вологе повітря
- •Параметри стану вологого повітря
- •Витікання і дроселювання газів і пари
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Ідеальні цикли теплових машин. Ідеальні цикли двигунів внутрішнього згорання. Основи їх роботи
- •Поршневі двигуни внутрішнього згорання. Основні поняття і визначення
- •Ідеальні термодинамічні цикли двз
- •Принцип роботи паросилових установок
- •Ідеальні цикли паросилових установок
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Ідеальні цикли компресорних установок. Основи їх роботи
- •Компресори та компресорні установки: класифікація, принцип роботи
- •Ідеальні цикли компресорних установок
- •Основні висновки:
- •Контрольні питання:
- •Способи поширення теплоти
- •Теплопровідність
- •Основні висновки:
- •Контрольні питання:
- •Прочитати:
- •Конвективний теплообмін. Променистий теплообмін
- •Загальні поняття. Закон тепловіддачі
- •Променистий теплообмін
- •Теплообмін під час конденсації пари.
- •Тепловіддача під час кипіння рідини
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Теплопередача і теплообмінні апарати
- •Теплопередача через плоску одношарову і багатошарову стінки. Коефіцієнт теплопередачі.
- •Теплообмінні апарати. Класифікація. Основи розрахунку їх
- •Методи інтенсифікації процесів теплопередачі
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Паливо і його характеристики. Процес горіння палива
- •Загальні відомості
- •Основи теорії горіння органічного палива
- •Основні висновки:
- •1. Котли. Класифікація котлів для сільського господарства
- •2. Тепловий баланс котла
- •3. Теплогенератори.
- •3. Техніка безпеки
- •Основні висновки:
- •1. Загальні відомості
- •2. Схема котельної установки
- •3. Особливості експлуатації котельних установок
- •Особливості будови та роботи тец
- •Основні висновки:
- •1. Структура енергопостачання
- •2. Регулювання мікроклімату приміщення
- •3. Шляхи енергозбереження
- •Основні висновки:
- •Загальні відомості
- •Принципові схеми систем вентиляції
- •Кондиціонування повітря
- •Основні висновки:
- •1. Загальні відомості
- •2. Діаграма стану вологого повітря
- •3. Принцип дії повітряної сушарки
- •4. Типи сушарок
- •5. Матеріальний і тепловий баланс сушарок
- •Основні висновки:
- •1. Загальні відомості
- •2. Теплові втрати приміщень
- •3. Внутрішні теплові надходження приміщень
- •4. Гаряче водопостачання
- •5.Радіатори
- •Основні висновки:
- •Загальні відомості
- •Теплофізичні характеристики
- •Основні висновки:
- •Загальні поняття, класифікація
- •Холодильні агенти та основні властивості
- •Термодинамічні основи роботи холодильних установок
- •Основні висновки:
- •Загальні відомості
- •Тепловий розрахунок сховищ
Параметри водяної пари
Нагрівання рідини
Теплота рідини - кількість тепла, потрібна для нагрівання 1 кг води від 0° С до температури кипіння при даному тиску. Згідно з першим законом термодинаміки, теплоту рідини можна визначити так:
(9.1)
Для невеликих тисків теплота рідини приблизно дорівнює ентальпії рідини.
(9.2)
Ентропія в ізобарному процесі нагрівання води від 0° С до температури кипіння (пароутворення) tH:
(9.3)
Пароутворення
Теплота пароутворення - кількість тепла, затрачена на перетворення 1 кг води, нагрітої до температури кипіння, в суху насичену пару.
Згідно з математичним виразом першого закону термодинаміки, теплота пароутворення може бути визначена так:
(9.4)
Зміну внутрішньої енергії (u" — u') називають внутрішньою теплотою пароутворення і позначають літерою р
(9.5)
Роботу розширення І = р (v" — v') (9.6) називають зовнішньою теплотою пароутворення і позначають літерою ψ. Таким чином, теплота пароутворення
(9.7)- повна теплота пароутворення приблизно дорівнює ентальпії сухої насиченої пари.
Ентальпію сухої насиченої пари визначаємо з формули
(9.8)
Ентропія сухої насиченої пари
(9.9)
Перегрів пари
Теплота перегріву - кількість тепла, потрібна для перетворення при даному тиску 1 кг сухої пари в перегріту.
(9.10)
Ентальпія перегрітої пари складається з суми ентальпій сухої пари й тепла перегріву,
(9.11)
Ентропія перегрітої пари
(9.12)
Насичене, ненасичене, перенасичене вологе повітря
Вологе повітря – це суміш сухого повітря і водяної пари, яке широко використовується в багатьох теплових процесах: вентиляція, опалення, кондиціонування повітря приміщень, сушіння матеріалів тощо.
При невисоких тисках, що характерно для технологічних процесів сільськогосподарського виробництва, без особливої похибки можна розглядати сухе повітря і водяну пару, яке утримується в ньому як ідеальні гази. У такому випадку для них справедливі закономірності, сформульовані для суміші ідеальних газів.
Відповідно до закону Дальтона для вологого повітря тиск складається з парціального тиску сухого повітря та парціального тиску водяної пари.
,
(9.13)
Стан водяної нари у вологому повітрі визначається її парціальним тиском.
Водяна пара знаходиться у вологому повітрі в перегрітому стані. У цьому випадку парціальний тиск водяної пари нижче тиску насичення рн вологого повітря при певній температурі. Суміш сухого повітря і перегрітої водяної пари називається вологим ненасиченим повітрям. Якщо знижувати температуру ненасиченого вологого повітря при постійному тиску, то можна досягти стану, коли рп=рн, тобто тиск і температура водяної пари відповідають станові насичення. Суміш сухого повітря і насиченої водяної пари називається насиченим вологим повітрям. Температура, до якої повинне остудитися вологе ненасичене повітря, щоб перегріта пара, що утримується в ньому, стала насиченим, називається температурою точки роси.
При подальшому охолодженні вологого повітря, тобто нижче температури точки роси, з повітря буде випадати волога і зменшуватися парціальний тиск пари.