
- •Розділ1 - основи гідравліки і насоси
- •Вступ. Основи гідростатики
- •Зміст і завдання дисципліни, порядок вивчення, зв’язок з іншими дисциплінами
- •Паливо-енергетичні ресурси Ураїни
- •Характеристики гідравліки як науки та її значення
- •Фізичні властивості рідини. Ідеальна і реальна рідина
- •Особливі властивості рідини
- •Гідростатичний тиск. Вимірювання гідростатисного тиску
- •Основне рівняння гідостатики. Закон Архімеда
- •Практичне застосування закону Паскаля
- •Основні висновки:
- •Контрольні питання:
- •Основи гідродинаміки
- •Основні поняття
- •Рівняння Бернулі для елементарної струмини ідеальної і реальної рідини. Рівняння Бернулі для потоку реальної рідини
- •Режими руху рідини. Число Рейнольдса
- •Втрати напору
- •Гідравлічний удар у трубах
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Призначення, класифікація і галузі застосування насосів
- •Подача, напір, потужність і ккд носіїв
- •Принцип дії насосів
- •Явище кавітації
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Розділ 2 - основи технічної термодинаміки
- •Основні поняття і визначення в технічній термодинаміці
- •Основні поняття і визначення
- •Робоче тіло, його основні параметри
- •Термодинамічна система
- •Термодинамічний процес
- •Основні газові закони
- •Універсальна газова стала
- •Основні висновки:
- •Контрольні питання:
- •Прочитати:
- •Суміш ідеальних газів. Теплоємність газів і газових сумішей
- •Поняття про газову суміш. Закон Дальтона
- •Склад суміші в об’ємних і масових частках
- •Визначення парціального тиску, парціального об’єму,уявної молекулярної маси компонентів та універсальної газової сталої.
- •Поняття про теплоємність. Масова, об’ємна і молярна теплоємність, залежність між ними
- •Теплоємність при сталому об’ємі та тиску
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Перший закон термодинаміки
- •1. Зміст закону та його формулювання
- •2. Внутрішня енергія та її властивості. Робота газу, її визначення. Ентальпія і ентропія газу.
- •Перший закон термодинаміки для потоку (відкрита система)
- •Загальні висновки:
- •Порядок і методи дослідження термодинамічних процесів. Ізохорний, ізобарний, ізотермічний, адіабатний процеси та їх зображення в кординатах pv, ts
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Другий закон термодинаміки
- •Зміст закону і його формулювання
- •2. Цикл Карно
- •3. Термічний ккд. Холодильний коефіцієнт
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Водяна пара і вологе повітря
- •Водяна пара як робоче тіло
- •Особливості пароутворення при постійному тиску
- •Параметри водяної пари
- •Насичене, ненасичене, перенасичене вологе повітря
- •Параметри стану вологого повітря
- •Витікання і дроселювання газів і пари
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Ідеальні цикли теплових машин. Ідеальні цикли двигунів внутрішнього згорання. Основи їх роботи
- •Поршневі двигуни внутрішнього згорання. Основні поняття і визначення
- •Ідеальні термодинамічні цикли двз
- •Принцип роботи паросилових установок
- •Ідеальні цикли паросилових установок
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Ідеальні цикли компресорних установок. Основи їх роботи
- •Компресори та компресорні установки: класифікація, принцип роботи
- •Ідеальні цикли компресорних установок
- •Основні висновки:
- •Контрольні питання:
- •Способи поширення теплоти
- •Теплопровідність
- •Основні висновки:
- •Контрольні питання:
- •Прочитати:
- •Конвективний теплообмін. Променистий теплообмін
- •Загальні поняття. Закон тепловіддачі
- •Променистий теплообмін
- •Теплообмін під час конденсації пари.
- •Тепловіддача під час кипіння рідини
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Теплопередача і теплообмінні апарати
- •Теплопередача через плоску одношарову і багатошарову стінки. Коефіцієнт теплопередачі.
- •Теплообмінні апарати. Класифікація. Основи розрахунку їх
- •Методи інтенсифікації процесів теплопередачі
- •Основні висновки:
- •Контрольні питання:
- •Домашнє завдання:
- •Прочитати:
- •Паливо і його характеристики. Процес горіння палива
- •Загальні відомості
- •Основи теорії горіння органічного палива
- •Основні висновки:
- •1. Котли. Класифікація котлів для сільського господарства
- •2. Тепловий баланс котла
- •3. Теплогенератори.
- •3. Техніка безпеки
- •Основні висновки:
- •1. Загальні відомості
- •2. Схема котельної установки
- •3. Особливості експлуатації котельних установок
- •Особливості будови та роботи тец
- •Основні висновки:
- •1. Структура енергопостачання
- •2. Регулювання мікроклімату приміщення
- •3. Шляхи енергозбереження
- •Основні висновки:
- •Загальні відомості
- •Принципові схеми систем вентиляції
- •Кондиціонування повітря
- •Основні висновки:
- •1. Загальні відомості
- •2. Діаграма стану вологого повітря
- •3. Принцип дії повітряної сушарки
- •4. Типи сушарок
- •5. Матеріальний і тепловий баланс сушарок
- •Основні висновки:
- •1. Загальні відомості
- •2. Теплові втрати приміщень
- •3. Внутрішні теплові надходження приміщень
- •4. Гаряче водопостачання
- •5.Радіатори
- •Основні висновки:
- •Загальні відомості
- •Теплофізичні характеристики
- •Основні висновки:
- •Загальні поняття, класифікація
- •Холодильні агенти та основні властивості
- •Термодинамічні основи роботи холодильних установок
- •Основні висновки:
- •Загальні відомості
- •Тепловий розрахунок сховищ
Термодинамічний процес
Будь-яка зміна в термодинамічній системі, пов'язана із зміною хоч би одного з її параметрів, називается термодинамічним процесом
Якщо одна система здійснює роботу над іншою системою за допомогою механичних і електричних сил, то взаємодія називається механічною. Взаємодія, яка наводить до зміни енергії і здійснюється у формі передачі теплоти за допомогою теплопровідності або теплової радіації, називається тепловою. Взаємодія, що призводить до зміни енергії і здійснюється у формі передачі маси, називається массообмінною.
Розрізняють рівноважні і неравноважні процеси.
Рівноважним процесом називається термодинамічний процес, який предсталяє собою безперервну послідовність рівноважних станів. У такому процесі фізичні параметри змінюються нескінченно повільно, так що система весь час знаходиться в рівноважному стані. Крім того, всі частини системи мають однакову температуру і тиск. Рівноважні процеси - оборотні. Оборотні термодинамічні процеси - це такі, за яких термодинамічна система після низки змін свого стану повертається до початкового. Зіставленням необоротних процесів з оборотними можна виявити шляхи підвищення ефективності перших (наприклад, ККД теплових двигунів).
Оборотний термодинамічний процес, в якому робоче тіло, повертаючись у вихідний стан, не набуває двічі одного і того ж стану, називається круговим прогресом, або циклом
Нерівноважним процесом називається термодинамічний процес, який представляє собою послідовність станів, серед яких не всі являются рівноважними. У нерівноважному процесі різні частини системи мають різні температури, тиски, щільність, концентрації.
Стан робочого тіла, коли в кожний момент часу параметри тілі однакові по всій товщі називається рівноважним
Процеси, що протікають в прямому (розширення) І зворотно (стиск) напрямах, проходячи через одні й ті самі проміжні стан в протилежній послідовності, називаються оборотними. При цьому в результаті проведення оборотного процесу як робоче тіло, так і навколишнє середовище повинні повернутися в початковий стан без будь-яких змін. Умови оборотності процесів такі: механічна рівновага, термічна рівновага, відсутність тертя.
Дійсні процеси нерівноважні (протікають з певними швидкостями й з великою різницею температур) і відбуваються при наявності тертя – необоротні.
Види термодинамічних процесів:
Ізохорний процес: — це термодинамічний процес, який відбувається при сталому об'ємі.
Ізобарний процес: зміна стану фізичної системи за сталого тиску.
Ізотермі́чний процес — це термодинамічний процес, який відбувається при сталій температурі.
Адіабатний процес - термодинамічний процес, який відбувається у системі за її повної ізоляції, тобто коли між системою та навколишнім середовищем відсутній теплообмін.
Політропний процес — термодинамічний процес, під час якого питома теплоємність c з газу залишається незмінною
Основні газові закони
Основні газові закони( для ідеальних газів):
1. Бойля-Маріотта
(4.6)
при сталій температурі питомий об’єм
ідеального газу змінюється обернено
пропорційно, а густина – прямо пропорційно
зміні тиску газу.
2. Гей-Люссака
(4.7)
при сталому тиску питомий об’єм
ідеального газу змінюється прямо
пропорційно, а густина – обернено
пропорційно абсолютній температурі
газу.
3. Шарля
(4.8)
при сталому об’ємі тиск ідеального
газу змінюється прямо пропорційно зміні
абсолютної температури
4. Авогадро
(4.9)
при однакових тисках і температурах
густина газів прямо пропорційна а
питомий об’єм обернено пропорційний
молекулярній масі цих газів.
Виведення термічного рівняння стану ідеального газу:
Об’єднаний закон Бойля-Маріотта та Гей-Люссака:
(4.10)- для ідеального газу в різних його станах добуток тиску на питомий об’єм, поділений на температуру – величина стала, яка називається газовою сталою const=R
(4.11)- питоме рівняння стану або характеристичне рівняння Клапейрона для 1 кг газу; де R – питома газова стала.
(4.12), де М – маса газу
(4.13)
(4.14) - рівняння
стану, або характеристичне рівняння
Клапейрона-Менделєєва для будь-якої
кількості (маси М, кг) ідеального газу.
р-Н/м2, v i V – м3/кг і м3, М-кг, R – Дж/кг К
Термічне рівняння
стану для реальних газів (Ван дер
Ваальса):
(4.15)
де а, b – коефіцієнти, що мають певне числове значення для різних газів