
- •1. Классификация и назначение мун пластов
- •2. Общая характеристика и виды гд-методов
- •3. Метод нестационарного заводнения с изменением фильтрационных потоков
- •4. Технология увелич. Нефтеотд. Пласта путём закачки теплоносителей. Разновидности технологии.
- •5. Технология впг. Основные параметры процесса впг. Инициирование горения в пласте. Хар-ка зон в пласте. Разновидности впг.
- •7. Физические основы применения тепловых методов для увеличения нефтеотдачи нефтяных пластов.
- •8. Проблема охлаждения пластов при внутриконтурном заводнении на примере Ромашкинского месторождения.
- •9. Технология щелочного заводнения. Опыт применения технологии в сочетании с пав и полимером.
- •10. Осн. Задачи и классификация методов контр. За рнм. Геолого-промысловые методы и лаб. Исследования. Геофиз. И гд-методы контроля за рнм.
- •11. Осн. Задачи с способы регулирования рнм. Классификация методов регулирования рнм. Регулир-е без изменения и путём частичного изменения запроектированной системы разработки.
- •12. Полимерное заводнение. Разновидности и опыт применения.
- •13. Понятие о науке рнм и её связь со смежными дисциплинами. Краткая история развития теории и практики рнм.
- •14. Объект разработки. Выделение объектов разработки.
- •15. Классификация и хар-ка систем разработки и условия их применения
- •16. Виды пластовой энергии. Режимы работы пластов
- •17. Характеристики и показатели рнм.
- •18. Ввод месторождения в разработку. Стадии рнм.
- •19. Модели пластов и их типы
- •20. Вероятностно-статистическое описание модели слоистого и неоднородного по площади пластов
- •21. Основы методик построения моделей пластов по геолого-физическим и промысловым данным.
- •22. Свойства горных пород и пластовых флюидов
- •Основные свойства пластовых флюидов
- •23. Точные методы решения задач рнм
- •24. Метод эквивалентных фильтрационных сопротивлений
- •25. Проявление упругого режима. Основная формула упругого режима (по Щелкачеву в.Н.)
- •26. Уравнение материального баланса. Упругий запас пласта. Расчеты упругого режима.
- •27. Режим растворенного газа. Разновидности режима.
- •29. Теория многофазного течения. Закон Дарси. Относительные Фазовые проницаемости и капиллярное давление. Функция Баклея–Леверетта. Осредненные относительные Фазовые проницаемости.
- •30. Основные уравнения процесса двухфазного течения в однородном линейном пласте (модель Баклея-Леверетта). Расчет распределения водонасыщенности в пласте и показателей разработки.
- •31. Разработка нефтегазоконденсатных месторождений на естественных режимах
- •32. Разработка пластов с аномально высоким пластовым давлением и месторождений неньютоновских нефтей
- •33. Трещиновато-пористые пласты. Особенности их геологического строения и разработки.
- •34. Опыт и проблемы разработки нефтяных месторождений с применением заводнения.
- •35. Моделирование процессов разработки
- •36. Смачиваемость горных пород и влияние на распределение флюидов в поровом пространстве. Кин. Факторы, влияющие на кин
- •37. Основные этапы, порядок составления и основное содержание технологических проектов по рнм.
- •38. Постановка плоской задачи вытеснения нефти водой в пористой среде. Основные уравнения и необходимые исходные данные. Начальные и граничные условия.
- •2.Уравнение неразрывности
- •38. Методы определения технологической эффективности применения мун
- •1. Определение технологической эффективности мун с использованием технологической схемы
- •2. Оценка технологической эффективности мун методом прямого счета
- •3. Особенности определения технологической эффективности современных гидродинамических мун
- •4. Определение технологической эффективности третичных мун
- •3. Граничные условия
- •39. Методика расчета технологических показателей разработки (методика ТатНипИнефть).
- •40. Разработка нг и нгк месторождений с воздействием на пласт
- •43. Расчет распределения давления в пласте конечно-разносным методом в плоской задачи вытеснения нефти водой с учетом двухфазности потока.
- •41. Микробиологические методы
- •45. Общий порядок решения плоской задачи фильтрации двухфазной жидкости.
- •42. Гидродинамические и геофизические методы контроля за рнм
- •43. Природные битумы рт и результаты опытно-промышленной разработки Кармальской и Ашальчинской залежей.
- •44. Методы расчета процесса теплового воздействия на пласт.(Намиота Лаверье, Маркса-Лангейхейма).
- •45. Газовые методы увеличения нефтеотдачи пластов.
- •46. Вытеснение нефти из пластов водными растворами пав
- •6. Закачка растворителей в пласт
8. Проблема охлаждения пластов при внутриконтурном заводнении на примере Ромашкинского месторождения.
Эксплуатация месторождения началась и успешно осуществляется с поддержанием пластового давления путем законтурного и внутриконтурного заводнений. Впервые в нефтяной практике бывшего СССР проводится нагнетание в нефтенасыщенную часть залежи больших объемов поверхностной воды из открытых водоемов, температура которой ниже пластовой.
Неоднородные по мощности и простиранию пласты горизонта Д1 вскрыты единым фильтром в нагнетательных и эксплуатационных скважинах. Вследствие более интенсивной выработки высокопроницаемых пластов имеет место понижение температуры эксплуатируемых низкими темпами малопроницаемых пластов. При снижении температуры ниже температуры кристаллизации часть парафина выпадет в пористой среде в виде твердой фазы и может значительно ухудшить фильтрационные свойства пласта. В связи с этим проведены термогидродинамические исследования для совершенствования системы разработки Ромашкинского месторождения. В ходе исследований установлено:
на устье нагнетательных скважин температура закачиваемой поверхностной воды изменяется в течение года от 1 до 27°С при среднем ее значении 110С;
температура потока на забое нагнетательных скважин горизонта Д1 в течение года в зависимости от их приемистости колеблется от 5 до 29°С. Средневзвешенная величина её составляет 14°С;
продолжительность восстановления температуры охлажденного пласта до начального состояния существенно превышает продолжительности нагнетания воды в скважины.
9. Технология щелочного заводнения. Опыт применения технологии в сочетании с пав и полимером.
Механизм повышения нефтеизвлечения при щелочном заводнении основан на взаимодействии щелочей с пластовой нефтью, водой и породой. В составе пластовой нефти имеются активные компоненты – органические кислоты. Их количество в разных нефтях разное. При контакте щёлочи с нефтью происходит взаимодействие щёлочи с орг. кислотами с образованием ПАВ в пласте. Образовавшиеся вещ-ва снижают межфазн. натяжение на границе нефть-раствор и увеличивают смачиваемость породы водой. Чем больше кислот в нефти, тем сильнее снижается межфазное натяжение при воздействии щёлочи.
Для приготовления щелочных растворов применяются сл. реагенты: каустическая сода NaOH (едкий натр) – это самый активный щелочной агент; кальцинированная сода; силикат натрия; аммиак; тринатрийфосфат (ТНФ).
Кислотное число – это масса KOH (мг), необходимое для нейтрализации органических кислот в 1 г нефти. По взаимодействия с щёлочью нефти делятся на:
малоактивные (кисл. число < 0,5);
активные (0,5–1,5);
высокоактивные (> 1,5).
При контакте щелочных растворов с нефтью из-за снижения межфазного натяжения образуются мелкодисперсные эмульсии типа нефть в воде (в активных нефтях) и вода в нефти (в малоактивных нефтях). Это позволяет выравнивать фронт вытеснения нефти водой и повышать коэф. охвата.
Применение щелочных растворов яв-ся самым эффективным методом уменьшения угла смачивания породы водой, т.е. гидрофилизации пористой среды (на контакте нефть-вода угол с 60–70 может снизиться до 10–20). При применении метода также увеличивается коэф-т вытеснения и отн. фаз. проницаемость нефти.
В результате реакции щёлочи с минеральной пластовой водой происходит внутрипоровое осадкообразование. Данный эффект можно использовать для блокирования высокопроницаемых каналов.
Щелочное заводнение применяется в виде оторочки раствора с последующим заводнением водой.