
- •Министерство образования и науки Российской Федерации Автономная некоммерческая образовательная организация высшего профессионального образования «тамбовский институт социальных технологий»
- •Учебно-методический комплекс дисциплины «Математические методы психологии» Автор: к.Пс.Н. Андреева а.А.
- •Раздел 1. Организационно-педагогическое описание учебного курса «Математические методы в психологии»
- •1.1. Назначение и цели дисциплины
- •1.2. Обязательный минимум содержание дисциплины
- •1.3. Структура дисциплины
- •1.4. Общие методические рекомендации по организации самостоятельной работы при изучении дисциплины
- •1.5. Требования к знаниям студентов и уровню их подготовки по завершению изучения дисциплины
- •1.6. Критерии оценки знаний студентов
- •Раздел 2. Тематическое содержание учебной дисциплины «Математические методы в психологии»
- •2.1. Рабочая учебная программа
- •Вопросы для подготовки к зачету по курсу
- •Раздел 3. Лекционный материал
- •3.1.Содержание лекционного материала (основной информационный блок) по темам программы учебного курса.
- •1. Первичное представление экспериментальных данных. Первичные описательные статистики.
- •2. Нормальный закон распределения. Проверка нормальности распределения.
- •Проверка гипотез с помощью статистических критериев. Содержательная интерпретация статистического решения.
- •Параметрические методы сравнения двух выборок. Сравнение дисперсий. Критерий t-Стьюдента для зависимых и независимых выборок.
- •1. Случай несвязных выборок
- •Выявление различий в уровне исследуемого признака. Оценка сдвига.
- •Выявление различий в распределении признака. Применение многофункциональных критериев к решению психологических задач.
- •Корреляция метрических переменных.
- •Применение непараметрических коэффициентов корреляции.
- •1. Математико-статистические идеи метода регрессионного анализа
- •2. Множественная линейная регрессия. Нелинейная регрессия.
- •1. Назначение, общие понятия и применение anova.
- •2. Однофакторный дисперсионный анализ anova.
- •1. Математико-статистические идеи и проблемы метода.
- •2. Использование факторного анализа в психологии
- •1. Многомерное шкалирование: назначение. Суть методов многомерного шкалирования (мш).
- •2. Меры различия.
- •3. Неметрическая модель.
- •Дискриминантный анализ: назначение.
- •Математико-статистические идеи метода. Исходные данные и результаты.
- •Кластерный анализ (ка) и система классификации исследованных объектов.
- •2. Методы кластерного анализа
- •Раздел 4. Самостоятельная работа
- •4.1. Задания для самостоятельной работы по темам
- •4.2. Примерная тематика контрольных работ и методические рекомендации по их написанию
- •Примерная тематика контрольных работ
- •Раздел 5. Литература
- •5.1. Основная литература
- •5.2. Дополнительная литература
- •Раздел 6. Тезаурус (определения основных понятий, категорий).
2. Методы кластерного анализа
Непосредственными данными для применения любого метода кластеризации является матрица различии между всеми парами объектов. Определение или задание меры различия является первым и необходимым шагом кластерного анализа.
Из всего множества методов кластеризации наиболее распространены так называемые иерархические агломеративные методы. Название указывает на то, что классификация осуществляется путем последовательного объединения (агломерации) объектов в группы, оказывающиеся в результате иерархически организованными. Эти методы — очень простые комбинаторные процедуры, отличающиеся критерием объединения объектов в кластеры.
Критерий объединения многократно применяется ко всей матрице попарных расстояний между объектами. На первых шагах объединяются наиболее близкие объекты, находящиеся на одном уровне сходства. Затем поочередно присоединяются остальные объекты, пока все они не объединятся в один большой кластер. Результат работы метода представляется графически в виде дендрограммы — ветвистого древовидного графика.
Существуют различные методы иерархического кластерного анализа, в частности, в программе SPSS предлагается 7 методов. Каждый метод дает свои результаты кластеризации, но три из них являются наиболее типичными.
Метод одиночной связи (Single Linkage) ~ наиболее понятный метод, который часто называют методом «ближайшего соседа» (Nearest Neighbor). Алгоритм начинается с поиска двух наиболее близких объектов, пара которых образует первичный кластер. Каждый последующий объект присоединяется к тому кластеру, к одному из объектов которого он ближе.
Метод полной связи (Complete Linkage) часто называют методом «дальнего соседа» (Furthest Neighbor). Правило объединения этого метода подразумевает, что новый объект присоединяется к тому кластеру, самый далекий элемент которого находится ближе к новому объекту, чем самые далекие элементы других кластеров. Это правило является противоположным предыдущему и более жестким. Поэтому здесь наблюдается тенденция к выделению большего числа компактных кластеров, состоящих из наиболее похожих элементов.
Метод средней связи (Average Linkage) пли межгрупповой связи (Between Groups Linkage) занимает промежуточное положение относительно крайностей методов одиночной и полной связи. На каждом шаге вычисляется среднее арифметическое расстояние между каждым объектом из одного кластера и каждым объектом из другого кластера. Объект присоединяется к данному кластеру, если это среднее расстояние меньше, чем среднее расстояние до любого другого кластера. По своему принципу этот метод должен давать более точные результаты классификации, чем остальные методы. То, что объединение кластеров в методе средней связи происходит при расстоянии большем, чем в методе одиночной связи, но меньшем, чем в методе полной связи, и объясняет промежуточное положение этого метода.
В реальных исследованиях обычно имеются десятки классифицируемых объектов, и применение каждого из указанных методов дает существенно разные результаты для одних и тех же данных. Опыт и литературные данные свидетельствуют, что наиболее близкий к реальной группировке результат позволяет получить метод средней связи. Но это не означает бесполезность применения двух других методов. Метод одиночной связи «сжимает» пространство, образуя минимально возможное число больших кластеров. Метод полной связи «расширяет» пространство, образуя максимально возможное число компактных кластеров. Каждый из трех методов привносит в реальное соотношение объектов свою структуру и представляет собой как бы свою точку зрения на реальность. Исследователь, в зависимости от стоящей перед ним задачи, вправе выбрать тот метод, который ему больше подходит.
Численность классов является отдельной проблемой в кластерном анализе. Сложность заключается в том, что не существует формальных критериев, позволяющих определить оптимальное число классов. В конечном итоге это определяется самим исследователем исходя из содержательных соображений. Однако для предварительного определения числа классов исследователь может обратиться к таблице последовательности агломерации (Agglomeration schedule). Эта таблица позволяет проследить динамику увеличения различий по шагам кластеризации и определить шаг, на котором отмечается резкое возрастание различий. Оптимальному числу классов соответствует разность между числом объектов и порядкового номера шага, на котором обнаружен перепад различий. Более подробно порядок оценки численности классов рассмотрен на примере компьютерной обработки.