
- •Как выглядит линейная модель парной регрессии? Как называют переменные, участвующие в модели?
- •2. Поясните смысл коэффициентов уравнения регрессии.
- •4. В чем состоят ошибки спецификации модели?
- •6. Перечислите виды моделей, нелинейных относительно а) включаемых переменных; б) оцениваемых параметров.
- •7. Чем отличается применение мнк к моделям, нелинейным относительно включаемых переменных, от применения к моделям, нелинейным по оцениваемым параметрам?
- •8. Как определяются и что показывают коэффициенты эластичности по разным видам регрессионных моделей?
- •Коэффициент эластичности для степенной модели
- •Коэффициент эластичности для линейной модели
- •10. Как проводится линеаризация нелинейных моделей?
- •11. Приведите формулы для расчета коэффициентов прямой парной регрессии по мнк.
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •12. Сформулируйте условия Гаусса-Маркова в методе наименьших квадратов (мнк).
- •13. Что представляет собой нуль-гипотеза и в каких ситуациях она отвергается?
- •14. В чём состоит ошибка (риск) 1 рода при тестировании гипотез?
- •О смысле ошибок первого и второго рода
- •Вероятности ошибок (уровень значимости и мощность)
- •16. Приведите формулу расчета коэффициента детерминации r2 и объясните его роль при определении качества построенного уравнения регрессии.
- •Интерпретация
- •Недостаток и альтернативные показатели
- •Скорректированный (adjusted)
- •Информационные критерии
- •-Обобщённый (extended)
- •17. Как производится проверка значимости уравнения регрессии по f-критерию Фишера?
- •19. Приведите формулы для дисперсий и стандартных отклонений мнк-оценок.
- •23. Каково условие однородности (гомоскедастичности) наблюдений?
- •28. Дайте определение коэффициента детерминации.
- •33. Дайте определение частного коэффициента корреляции. Какова его роль в процедуре шаговой регрессии последовательного включения (исключения) переменных?
- •35. В чем заключается проблема мультиколлинеарности факторов?
- •36. Опишите способы устранения мультиколлинеарности
- •39. Дайте определение гетероскедастичности наблюдений.
- •40. В чем заключается тестирование гетероскедастичности на основе теста Голдфелда – Квандта?
- •43. Сформулируйте теорему Айткена о коэффициентах обобщенного мнк.
- •45. Каковы основные принципы прогнозирования экономических процессов?
- •53. Какие проблемы возникают при наличии автокорреляции остатков временного ряда?
- •55. Перечислите основные элементы временного ряда.
- •54. Как используются критерии Дарбина-Ватсона для обнаружения автокорреляции остатков
10. Как проводится линеаризация нелинейных моделей?
Для оценки параметров нелинейных моделей, как правило, используют линеаризацию модели, которая заключается в том, что с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными. Если не удается подобрать соответствующее линеаризующее преобразование, то применяют методы нелинейной оптимизации на основе исходных переменных.
Различают два класса нелинейных регрессионных моделей:
- модели, нелинейные относительно фактора, но линейные по параметрам;
- модели нелинейные по параметрам.
Модели, нелинейные относительно факторов, но линейные по параметрам. Введением новых переменных такую модель можно свести к линейной, для оценки параметров которой используется обычный метод наименьших квадратов.
Рассмотрим примеры линеаризующих преобразований:
1) Полиномиальная
модель:
.
Соответствующая
линейная модель:
,
где
.
2) Гиперболическая
модель:
.
Соответствующая
линейная модель:
,
где
.
3) Логарифмическая
модель:
.
Соответствующая
линейная модель:
,
где
.
Следует отметить и недостаток такой замены переменных, связанный с тем, что вектор оценок получается не из условия минимизации суммы квадратов отклонений для исходных переменных, а из условия минимизации суммы квадратов отклонений для преобразованных переменных, что не одно и то же.
Полиномами второго порядка описывается зависимость урожайности от количества внесенных удобрений. Гиперболическая модель может быть использована для характеристики связей между нормой безработицы и процентом прироста заработной платы (кривая Филлипса). Логарифмическая модель может быть использована для описания доли расходов на товары длительного пользования (кривая Энгеля) в зависимости от общих сумм расходов.
Модели нелинейные по параметрам. Среди таких моделей выделяют нелинейные модели внутренне линейные и нелинейные модели, внутренне нелинейные. Модели внутренне линейные можно привести к линейному виду с помощью соответствующих преобразований.
Примеры внутренне линейных моделей и их линеаризация:
1) Мультипликативная
степенная модель:
.
Линеаризующее преобразование:
Или
,
где
.
2) Экспоненциальная
модель:
.
Линеаризующее
преобразование:
.
3) Обратная
регрессионная модель:
.
Линеаризующее
преобразование:
.
К моделям, полученным после проведения линеаризующих преобразований можно применять обычные методы исследования линейной регрессии. Но поскольку в них присутствуют не фактические значения изучаемого показателя, то оценки параметров получаются несколько смещенными. При анализе линеаризуемых функций регрессии, следует особенно тщательно проверять выполнение предпосылок метода наименьших квадратов.
11. Приведите формулы для расчета коэффициентов прямой парной регрессии по мнк.
Метод наименьших квадратов (МНК, OLS, Ordinary Least Squares) — один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.
Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных. Поэтому метод наименьших квадратов может применяться также для приближённого представления (аппроксимации) заданной функции другими (более простыми) функциями, при нахождении совокупности величин, удовлетворяющих уравнениям или ограничениям, количество которых превышает количество этих величин и т. д.