
- •Как выглядит линейная модель парной регрессии? Как называют переменные, участвующие в модели?
- •2. Поясните смысл коэффициентов уравнения регрессии.
- •4. В чем состоят ошибки спецификации модели?
- •6. Перечислите виды моделей, нелинейных относительно а) включаемых переменных; б) оцениваемых параметров.
- •7. Чем отличается применение мнк к моделям, нелинейным относительно включаемых переменных, от применения к моделям, нелинейным по оцениваемым параметрам?
- •8. Как определяются и что показывают коэффициенты эластичности по разным видам регрессионных моделей?
- •Коэффициент эластичности для степенной модели
- •Коэффициент эластичности для линейной модели
- •10. Как проводится линеаризация нелинейных моделей?
- •11. Приведите формулы для расчета коэффициентов прямой парной регрессии по мнк.
- •Сущность мнк
- •Мнк в случае линейной модели
- •Пример: простейшая (парная) регрессия
- •12. Сформулируйте условия Гаусса-Маркова в методе наименьших квадратов (мнк).
- •13. Что представляет собой нуль-гипотеза и в каких ситуациях она отвергается?
- •14. В чём состоит ошибка (риск) 1 рода при тестировании гипотез?
- •О смысле ошибок первого и второго рода
- •Вероятности ошибок (уровень значимости и мощность)
- •16. Приведите формулу расчета коэффициента детерминации r2 и объясните его роль при определении качества построенного уравнения регрессии.
- •Интерпретация
- •Недостаток и альтернативные показатели
- •Скорректированный (adjusted)
- •Информационные критерии
- •-Обобщённый (extended)
- •17. Как производится проверка значимости уравнения регрессии по f-критерию Фишера?
- •19. Приведите формулы для дисперсий и стандартных отклонений мнк-оценок.
- •23. Каково условие однородности (гомоскедастичности) наблюдений?
- •28. Дайте определение коэффициента детерминации.
- •33. Дайте определение частного коэффициента корреляции. Какова его роль в процедуре шаговой регрессии последовательного включения (исключения) переменных?
- •35. В чем заключается проблема мультиколлинеарности факторов?
- •36. Опишите способы устранения мультиколлинеарности
- •39. Дайте определение гетероскедастичности наблюдений.
- •40. В чем заключается тестирование гетероскедастичности на основе теста Голдфелда – Квандта?
- •43. Сформулируйте теорему Айткена о коэффициентах обобщенного мнк.
- •45. Каковы основные принципы прогнозирования экономических процессов?
- •53. Какие проблемы возникают при наличии автокорреляции остатков временного ряда?
- •55. Перечислите основные элементы временного ряда.
- •54. Как используются критерии Дарбина-Ватсона для обнаружения автокорреляции остатков
ВОПРОСЫ ДЛЯ ПИСЬМЕННОГО ОТВЕТА
Как выглядит линейная модель парной регрессии? Как называют переменные, участвующие в модели?
Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров.
Линейная регрессия сводится к нахождению уравнения вида
или
.
Уравнение вида
позволяет по заданным значениям фактора
находить теоретические значения
результативного признака, подставляя
в него фактические значения фактора
.
2. Поясните смысл коэффициентов уравнения регрессии.
В общем случае коэффициент регрессии k показывает, как в среднем изменится результативный признак ( Y ), если факторный признак ( X ) увеличится на единицу .
Свойства коэффициента регрессии
•Коэффициент регрессии принимает любые значения.
•Коэффициент регрессии не симметричен , т.е. изменяется, если X и Y поменять местами.
Единицей измерения коэффициента регрессии является отношение единицы измерения Y к единице измерения X
([ Y ] / [ X ]).
• Коэффициент регрессии изменяется при изменении единиц измерения X и Y .
4. В чем состоят ошибки спецификации модели?
Спецификация модели (т.е. формулировка модели) отражает наше представление о механизме зависимости между двумя переменными и сам выбор этих переменных, исходя из соответствующей теории связи между ними.
От правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результативного признака подходят к фактическим данным.
К ошибкам спецификации будут относиться не только неправильный выбор той или иной математической функции для у, но и недоучет в уравнении регрессии какого-либо существенного фактора, т.е. использование парной регрессии вместо множественной. Так, спрос на конкретный товар может определяться не только ценой, но и доходом на душу населения.
Наряду с ошибками спецификации могут иметь место ошибки выборки, поскольку исследователь чаще всего имеет дело с выборочными данными при установлении закономерной связи между признаками. Ошибки выборки имеют место и в силу неоднородности данных в исходной статистической совокупности, что, как правило, бывает при изучении экономических процессов. Если совокупность неоднородна, то уравнение регрессии не имеет практического смысла. Для получения хорошего результата обычно исключают из совокупности единицы с аномальными значениями исследуемых признаков. И в этом случае результаты регрессии представляют собой выборочные характеристики.
Использование временной информации также представляет собой выборку из всего множества хронологических дат. Изменив временной интервал, можно получить другие результаты регрессии.
Наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки – увеличивая объем исходных данных, то ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками. Особенно велика роль ошибок измерения при исследовании на макроуровне. Так, в исследованиях спроса и потребления в качестве объясняющей переменной широко используется «доход на душу населения». Вместе с тем статистическое измерение величины дохода сопряжено с рядом трудностей и не лишено возможных ошибок, например в результате наличия сокрытых доходов.
Предполагая, что ошибки измерения сведены к минимуму, основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели.