- •Основные типы природных газов(пг) и их различия.
- •2.Компонентный состав (пг).
- •3. Способы выражения состава (пг).
- •4. Плотность газа: абсолютная и относительная.
- •5.Динамическая и кинематическая вязкость газа.
- •6. Уравнение состояния идеального и реального газа.
- •7. Критические параметры газа: Ткр , Ркр
- •8. Определение коэффициента сверхсжимаемости газа
- •9. Термодинамические функции газа: теплоемкость и энтальпия
- •10. Дросселирование газа. Коэффициент Джоуля Томсона.
- •11. Влажность газа абсолютная и относительная. Влагоемкость газа.
- •Определение равновесного влагосодержания. Точка росы газа по воде.
- •Образование гидратов природных газов. Состав и свойства гидратов.
- •14.Метода предупреждения гидратообразования в скважинах и трубопроводах.
- •15.Месторождения природного газа и основные типы газовых залежей.
- •16.Температура и давление в газовых залежах
- •17.Распределение давления по стволу остановленной скважины
- •18.Режимы работы газовых залежей
- •19.Уравнение материального баланса газовой залежи.
- •20.Конструкция скважин и обвязка устья обсадных колонн.
- •21.Зарезка боковых стволов в скважинах.
- •22.Устройство фонтанной арматуры.
- •23.Обвязка кустов скважин.
- •24.Уравнение притока газа к скважине.
- •25.Исследование газовых скважин на установившихся режимах
- •26. Измерение дебита газовых скважин
- •2 7.Исследование газовых скважин на неустановившихся режимах притока
- •28.Оборудование для исследования газовых скважин. Установки «Надым -1» и «Надым-2»
- •29. Технологические режимы эксплуатации газовых скважин.
- •30.Расчет забойного давления в работающей газовой скважине по давлению на её устье.
- •31.Расчет диаметра лифтовых труб в скважине.
- •32.Распределение температуры газа по стволу работающей скважины.
- •33.Особенности эксплуатации газовых скважин в условиях ммп.
- •34.Основные виды осложнений состояния скважин, вызванные ммп.
- •35.Схемы сбора газа, расчет газосборных трубопроводов.
- •36.Сепарация газа и типы сепараторов.
- •37.Осушка газа на газовых месторождениях.
- •38.Дожимные компрессорные станции, их назначение и время ввода.
- •39.Явления обратной конденсации и обратного испарения в газоконденсатных залежах
- •40. Промысловые газоконденсатные исследования
- •41.Исследование газоконденсатных систем на установках фазовых равновесий.
- •42.Способы разработки газоконденсатных залежей.
- •43.Задачи подземного хранения газа и виды подземных хранилищ
- •44.Обустройство и технология эксплуатации подземных хранилищ газа.
- •45.Приток газа к горизонтальной скважине.
- •46.Помывка песчаных пробок в газовых скважинах.
- •47.Водоизоляционные работы в скважинах.
- •Состав газа и конденсата, способы его выражения.
- •2. Влажность газа и образование гидратов.
- •3. Использование турбодетандера для охлаждения газа.
- •4. Абсорбционная осушка газа.
- •5. Характеристика абсорбентов и их регенерация.
- •6. Многофункциональный абсорбер.
- •7. Адсорбционная осушка газа.
- •8. Характеристики адсорбентов и их регенерация.
- •9. Движущая сила и формула массообмена.
- •10. Дросселирование и энтальпия газа.
- •11. Низкотемпературная сепарация газа.
- •12. Уравнение материального баланса абсорбера.
- •1 3. Извлечение тяжелых углеводородов из газа методом масляной абсорбции.
- •15. Методы стабилизации конденсата.
- •17. Методы интенсификации массообмена при абсорбции. Барботажный и распыливающий абсорберы.
- •18. Требования отраслевого стандарта к качеству транспортируемого газа.
- •19. Дожимная компрессорная станция. Назначение и технологическая схема.
- •20. Гидравлический расчет газопровода.
- •21. Равновесное влагосодержание и влагоемкость газа
- •22. Рабочая и равновесная линия абсорбера
- •1.Газовые, газоконденсатные и газогидратные залежи. Особенности поведения углеводородных систем при разработке залежей.
- •2.Классификация углеводородных жидкостей и газов по компонентному составу.
- •3.Понятие рациональной системы и выбор оптимального варианта разработки месторождения.
- •4.Газовая залежь как единое целое. Понятие об удельных объемах дренирования.
- •5.Средневзвешенные пластовые давления в залежи и зоне отбора газа. Понятие о депрессионной воронке.
- •6.Режимы разработки газовых и газоконденсатных залежей.
- •7.Уравнение материального баланса газовой залежи.
- •8.Характерные особенности проявления и установление режима разработки газовой залежи.
- •9.Определение запасов газа объемным методом и методом падения пластового давления в залежи.
- •10. Особенности приток газа к забою скважин, уравнение притока газа.
- •11. Технология исследования скважин и обработки результатов для получения уравнения притока газа.
- •12. Периоды разработки месторождений по объемам добычи газа.
- •13. Периоды разработки по степени изученности месторождений.
- •14. Периоды разработки по способам транспортировки газа.
- •15. Газо - и конденсатоотдача при разработке месторождений.
- •16. Факторы ограничивающие производительность скважин.
- •17. Технологический режим эксплуатации скважин и его установление.
- •18. Системы размещения скважин на газовых и газоконденсатных месторождениях.
- •24. Выделение объектов разработки на многопластовых месторождениях.
- •25. Системы разработки многопластовых месторождений.
- •26. Способы вскрытия пластов на многопластовых месторождениях.
- •27. Особенности поведения газоконденсатных систем при разработке месторождений.
- •28. Методы исследований для установления газоконденсатных характеристик залежей.
- •29. Способы разработки газоконденсатных залежей.
- •30. Этапы проектирования разработки месторождения.
- •31. Основные положения проекта разработки месторождения
- •32. Геолого-промысловый контроль за разработкой месторождений.
- •33. Анализ разработки газовых и газоконденсатных месторождений.
- •34. Системы разработки нефтегазоконденсатных (газоконденсатонефтяных) залежей.
38.Дожимные компрессорные станции, их назначение и время ввода.
При отборе газа из газовой (газоконденсатной) залежи давление в процессе разработки непрерывно уменьшается. В определённый момент собственного давления становится недостаточно для подачи газа потребителю (магистральный газопровод МГ, ТЭЦ и т.д.) с заданным расходом, хотя остаточные запасы газа в залежи значительны. Начинается период компрессорной эксплуатации газовой залежи с помощью промысловых дожимных компрессорных станций (ДКС), предназначенных для следующих целей:
Сжатия газа до необходимого давления. При подаче газа в МГ это давление может изменяться от 3,7 до 10 МПа. В процессе транспортировки газа на химические комбинаты, ТЭЦ, на технологические нужды промышленных предприятий давление у потребителя изменяется от 0,5 до 1,7 МПа. При работе УКПГ давление обрабатываемого газа может достигать 8 МПа.
Увеличения газоотдачи пласта понижением давления на всём пути движения газа из пласта до приёмного коллектора ДКС и в самой залежи; практика показывает, что в бескомпрессорный период эксплуатации газовых месторождений можно отобрать 50 – 60 % начальных запасов газа, в комрессорный период эксплуатации – ещё 20 – 30 %.
Увеличения дебитов добывающих скважин уменьшением забойного давления и, следовательно, увеличением депрессии.
Улучшения технико-экономических показателей начального участка МГ большой протяжённости или МГ небольшой длины.
Для сжатия газа до заданного давления на промысловых ДКС можно использовать поршневые, центробежные и винтовые компрессоры.
39.Явления обратной конденсации и обратного испарения в газоконденсатных залежах
О
братная
конденсация,
ретроградная конденсация, выпадение
жидкой фазы в двух- или многокомпонентной
газовой системе вблизи её критической
точки
при изотермическом снижении давления,
фазовая диаграмма такой системы в
переменных Т—р приведена на рис.
В отличие от индивидуальных веществ, у
которых границей раздела жидкой фазы
и пара является кривая кипения A1K1,
заканчивающаяся в критической точке
K1,
диаграмма фазового состояния смеси
имеет вид петлеобразной кривой АКВ,
внутри которой смесь находится в
двухфазном состоянии (жидкость + пар).
Кривые кипения АК
и конденсации KB
смеси смыкаются в критической точке К,
где исчезает различие в свойствах обеих
фаз. В области температур от Тк
до Тт
при изотермическом снижении давления,
например по изотерме
cd,
из однородной газовой фазы выпадают
капли жидкости (в точке с),
количество жидкости постепенно
увеличивается до максимального значения
в точке F,
а затем начинает снижаться, и в точке d
жидкая фаза исчезает полностью (т. н.
изотермическая О. к. или О. к. первого
рода). Зона KMG,
в которой происходит аномальное выделение
конденсата при снижении р,
называется областью О. к. (слово «обратная»
указывает на возвращение системы вновь
в двухфазное состояние). Широкое
практическое применение явление
изотермической О. к. получило при добыче
конденсата
газового
из газоконденсатных месторождений
природного газа. При пересечении
двухфазной области по адиабате
в интервале давлений от рк
до рт,
например по линии ab,
в однородной жидкой смеси появляются
пузырьки газа (в точке а),
количество газа с ростом Т
сначала увеличивается, а затем убывает
и в точке b
система вновь становится жидкой (т. н.
обратное испарение или О. к. второго
рода).
