
- •Вопрос 2. Вектором (кортежем) в линейной алгебре и дискретной математике называют упорядоченный набор элементов. Это не есть определение вектора, поскольку целесообразнее это понятие считать основным.
- •Вопрос3. Соответствия.
- •Вопрос7.Отношение называется отношением эквивалентности (или просто эквивалентностью), если оно рефлексивно, симметрично и транзитивно.
- •Вопрос9. Непустое множество m с бинарной операцией называется группоидом. Иногда нам удобнее использовать обозначение
- •Вопрос10
- •Вопрос12. Полем называется кольцо p, обладающее следующими свойствами:
- •Вопрос13.Множество всех перестановок множества X (то есть биекций X →X) с операцией композиции образуют группу, которая называется симметрической группой или группой перестановок X.
- •Вопрос14. Кольцо вычетов
- •16. Теорема о числе подмножеств n-элементного множества
- •17. Понятие перестановки. Теорема о числе перестановок n-го элементного множества.
- •18. Понятие перестановки с повторениями. Теорема о числе перестановок с повторениями.
- •19. Понятие сочетания. Теорема о числе сочетаний из n элементов по k. Свойства сочетаний.
- •20. Понятие сочетания с повторениями. Теорема о числе сочетания с повторениями.
- •21. Понятие размещения. Теорема о числе размещений.
- •22. Понятие композиции. Теорема о числе композиций n.
- •25. Основные понятия и определения теории графов.
- •Вопрос26
- •Вопрос27
- •Вопрос28Алгоритм Прима
- •Вопрос 29 Построение минимального остовного дерева
- •Вопрос 30
- •Вопрос 31 Поиск в ширину
- •Вопрос32
- •Вопрос33
- •Вопрос35
- •Вопрос36 Алгоритм Флойда — Уоршелла — динамический алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного ориентированного графа. Алгоритм
- •Вопрос37. Понятие логической функции. Способы задания логических функций.
- •1) Табличный способ
- •2) Числовой способ
- •3) Координатный способ
- •4) Аналитический способ
- •Вопрос38 Булева алгебра. Основные свойства операций булевой алгебры. Понятие двойственности и самодвойственной логической функции.
- •Вопрос39 Алгебра Жегалкина. Основные свойства операций алгебры Жегалкина.
- •Вопрос40Алгебра Жегалкина. Представление логических функций полиномом Жегалкина.
- •Вопрос41и 42 Разложение логической функции по переменным. Понятие совершенной дизъюнктивной нормальной формы логической функции. Понятие совершенной конъюнктивной нормальной формы логической функции.
- •31(42). Понятие полинома логической функции(полинома Жегалкина). Понятие линейной логической функции.
22. Понятие композиции. Теорема о числе композиций n.
Понятие композиции
В теории чисел композицией, или разложением, натурального числа называется его представление в виде упорядоченной суммы натуральных слагаемых. Слагаемые, входящие в композицию, называют частями, а их количество — длиной композиции.
В отличие от композиции, разбиение числа не учитывает порядок следования частей. Поэтому число разбиений числа никогда не превосходит числа композиций.
При фиксированной длине композиций в них иногда также допускают нулевые части.
Композиции и разбиения. Пусть стоит задача порождения разбиения положительного числа n в последовательность неотрицательных целых чисел {p1,p2,…,pk}, так что p1+p2+…+pk=n причем на рi могут накладываться различные ограничения.
Если порядок чисел рi важен, то (p1,p2,…,pk) называется композицией n. Поиск композиций ведется с ограничением рi>0.
Если k фиксировано, то такие композиции называются композициями n из k частей. При их поиске ограничение рi>0 может сниматься, т.е. разрешается рi=0.
Если порядок рi не важен и рi>0, то {p1,p2,…,pk} является мультимножеством и называется разбиением n.
Поясним различие между композициями, композициями из k частей и разбиениями на следующем примере:
n=3,
композиции: (3), (1,2), (2,1), (1,1,1),
композиции из двух частей (рi>0): (1,2), (2,1),
композиции из двух частей (рi³0): (0,3), (1,2), (2,1), (3,0),
разбиения: {3}, {1,2}, {1,1,1}.
Теорема. Число композиций n равно 2n-1.
Доказательство. Разделим отрезок длины n на n отрезков единичной длины с помощью (n-1) точки. Тогда композиции n взаимно однозначно соответствует пометка некоторых из точек разделения. Элементами композиции в этом случае будет расстояние между смежными точками. Например, композиция (2,2,1), n=5 представлена на рис.1.
SHAPE * MERGEFORMAT
2 |
2 |
1 |
0 |
1 |
2 |
3 |
4 |
5 |
Рис.1 |
Следовательно, каждая композиция n соответствует способу выбора подмножества из (n-1) точек. То есть число композиций n равно 2n-1.
Вопросы 23,24
Теорема.
Число композиций n из k частей
с ограничением рi>0
равно
.
Доказательство. Представим композицию также как при доказательстве предыдущей теоремы. Каждая композиция n из k частей (рi>0) соответствует способу выбора (k-1)-элементного подмножества точек из n-1 точек. То есть число таких композиций равно .
Теорема.
Число композиций n из k частей,
если pi³0
равно
.
Доказательство. Каждой композиции n из k частей при рi³0 взаимно однозначно соответствует двоичный набор, такой, что первое слагаемое равно числу единиц, стоящих перед первым нулем в наборе, второе - числу единиц, стоящих перед первым и вторым нулями, и т.д. Пример такого представления композиции n=4, k=3 приведен в табл.1.
Длина
набора равна n+k-1, число нулей равно k-1,
следовательно, число наборов (искомых
композиций) равно числу способов
выбора k-1 мест для нулей из n+k-1 мест
(
)
или тоже самое числу способов выбора n мест
для единиц из n+k-1 мест (
).
Таблица 1.
№ |
Композиция |
Двоичный набор |
Сочетание из 6 по 2 |
1 |
0+0+4 |
0 0 1 1 1 1 |
1 2 |
2 |
0+1+З |
0 1 0 1 1 1 |
1 3 |
3 |
0+2+2 |
0 1 1 0 1 1 |
1 4 |
... |
... |
... |
... |
13 |
3+0+1 |
1 1 1 0 0 1 |
4 5 |
14 |
3+1+0 |
1 1 1 0 1 0 |
4 6 |
15 |
4+0+0 |
1 1 1 1 0 0 |
5 6 |
Доказательство данной теоремы можно было также получить путем установки взаимно однозначного соответствия между данными композициями и множеством всех сочетания из k элементов по n с повторениями.