
- •Вопрос 2. Вектором (кортежем) в линейной алгебре и дискретной математике называют упорядоченный набор элементов. Это не есть определение вектора, поскольку целесообразнее это понятие считать основным.
- •Вопрос3. Соответствия.
- •Вопрос7.Отношение называется отношением эквивалентности (или просто эквивалентностью), если оно рефлексивно, симметрично и транзитивно.
- •Вопрос9. Непустое множество m с бинарной операцией называется группоидом. Иногда нам удобнее использовать обозначение
- •Вопрос10
- •Вопрос12. Полем называется кольцо p, обладающее следующими свойствами:
- •Вопрос13.Множество всех перестановок множества X (то есть биекций X →X) с операцией композиции образуют группу, которая называется симметрической группой или группой перестановок X.
- •Вопрос14. Кольцо вычетов
- •16. Теорема о числе подмножеств n-элементного множества
- •17. Понятие перестановки. Теорема о числе перестановок n-го элементного множества.
- •18. Понятие перестановки с повторениями. Теорема о числе перестановок с повторениями.
- •19. Понятие сочетания. Теорема о числе сочетаний из n элементов по k. Свойства сочетаний.
- •20. Понятие сочетания с повторениями. Теорема о числе сочетания с повторениями.
- •21. Понятие размещения. Теорема о числе размещений.
- •22. Понятие композиции. Теорема о числе композиций n.
- •25. Основные понятия и определения теории графов.
- •Вопрос26
- •Вопрос27
- •Вопрос28Алгоритм Прима
- •Вопрос 29 Построение минимального остовного дерева
- •Вопрос 30
- •Вопрос 31 Поиск в ширину
- •Вопрос32
- •Вопрос33
- •Вопрос35
- •Вопрос36 Алгоритм Флойда — Уоршелла — динамический алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного ориентированного графа. Алгоритм
- •Вопрос37. Понятие логической функции. Способы задания логических функций.
- •1) Табличный способ
- •2) Числовой способ
- •3) Координатный способ
- •4) Аналитический способ
- •Вопрос38 Булева алгебра. Основные свойства операций булевой алгебры. Понятие двойственности и самодвойственной логической функции.
- •Вопрос39 Алгебра Жегалкина. Основные свойства операций алгебры Жегалкина.
- •Вопрос40Алгебра Жегалкина. Представление логических функций полиномом Жегалкина.
- •Вопрос41и 42 Разложение логической функции по переменным. Понятие совершенной дизъюнктивной нормальной формы логической функции. Понятие совершенной конъюнктивной нормальной формы логической функции.
- •31(42). Понятие полинома логической функции(полинома Жегалкина). Понятие линейной логической функции.
31(42). Понятие полинома логической функции(полинома Жегалкина). Понятие линейной логической функции.
Понятие полинома логической функции(полинома Жегалкина)
Полином Жегалкина — многочлен над кольцом , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ)."Линейная" функция.
Понятие линейной логической функции
Это - такая логическая функция, которую можно выразить через , 0 и 1.
Чтобы узнать, линейна ли функция, надо выразить ее через полином Жегалкина и посмотреть, не встречается ли там операция &. Если нет, то функция линейна. Для функций от 1 и 2 переменных мы уже приводили формулы, выражающие их через &, и константы.