
- •1.Матрицы и действия над ними.
- •2.Определители 2-го, 3-го и n-го порядка.
- •3.Свойства определителей.
- •9.Определение n-мерных арифметических векторов и действий над ними.
- •10.Линейная зависимость и независимость арифметических векторов.
- •12.Определение ранга матрицы. Теорема о ранге матрицы.
- •13.Теорема о равенстве числа векторов в двух максимальных линейно независимых подсистемах векторов.
- •14.Вычисление ранга матрицы методом окаймляющих миноров.
- •15. Вычисление ранга матрицы методом элементарных преобразований.
- •16. Теорема Кронекера-Капелли. Решение систем на основе теоремы Кронекера-Капелли.
- •17. Однородная система линейных уравнений. Свойства её решений.
- •23.Понятие свободного вектора. Теорема о проекции вектора на ось.
- •24.Координаты вектора и их вычисление по координатам его начала и конца. Направляющие косинусы.
- •25.Длина вектора и формула для вычисления расстояния между двумя точками пространства.
- •26.Линейные операции над векторами.
- •27.Основные теоремы о проекциях векторов.
- •28.Разложение векторов на компоненты.
- •29.Скалярное произведение векторов и их свойства.
- •30.Векторное произведение векторов и их свойства.
- •31. Смешанное произведение векторов. Свойства
- •32.Общее уравнение прямой на плоскости:
- •33. Уравнение прямой в отрезках:
- •34.Нормальное уравнение прямой .Вычисление расстояния от точки до прямой на плоск.
- •35.Общее уравнение плоскости
- •36.Уравнение плоскости в отрезках
- •37. Нормальное уравнение плоскости
- •39. Каноническое уравнение эллипса
- •40. Каноническое уравнение гиперболы
- •41. Каноническое уравнение параболы
- •43. Каноническое уравнение эллипсоида
- •44. Каноническое уравнение
- •45. Каноническое уравнение двуполостного гиперболоида
- •54.Ортогональный и ортонормированный базис евклидова пространства. Процесс ортогонализации.
- •55. Ортогональные (унитарные матрицы).
- •4. Оператор сдвига
- •6. Оператор поворота относительно произвольной оси
- •58.Действия с линейными операторами.
- •Характеристический многочлен
- •60. Матрица линейного оператора в базисе из собственных векторов.
- •61. Понятие сопряженного и самосопряженного оператора. Собственные числа самосопряженного оператора.
- •62.Квадратичная форма. Приведение квадратичной формы к каноническому виду в ортогональном и нормированном базисе.
60. Матрица линейного оператора в базисе из собственных векторов.
Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: тогда .
Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.
Существует ли другой базис, в котором матрица имеет диагональный вид? Ответ на поставленный вопрос дает следующая теорема.
Теорема. Матрица линейного оператора A в базисе (i = 1..n) имеет диагональный вид тогда и только тогда, когда все векторы базиса - собственные векторы оператора A.
Правило отыскания собственных чисел и собственных векторов.
Пусть дан вектор , где x1, x2, …, xn - координаты вектора относительно базиса и - собственный вектор линейного оператора A, соответствующий собственному числу , то есть . Это соотношение можно записать в матричной форме
. (*)
Уравнение (*) можно рассматривать как уравнение для отыскания , причем , то есть нас интересуют нетривиальные решения, поскольку собственный вектор не может быть нулевым. Известно, что нетривиальные решения однородной системы линейных уравнений существуют тогда и только тогда, когда det(A - λE) = 0. Таким образом, для того, чтобы λ было собственным числом оператора A необходимо и достаточно, чтобы det(A - λE) = 0.
Если уравнение (*) расписать подробно в координатной форме, то получим систему линейных однородных уравнений:
(1)
где - матрица линейного оператора.
Система (1) имеет ненулевое решение, если ее определитель D равен нулю
.
Получили уравнение для нахождения собственных чисел.
Это уравнение называется характеристическим уравнением, а его левая часть - характеристическим многочленом матрицы (оператора) A. Если характеристический многочлен не имеет вещественных корней, то матрица A не имеет собственных векторов и ее нельзя привести к диагональному виду.
Пусть λ1, λ2, …, λn - вещественные корни характеристического уравнения, причем среди них могут быть и кратные. Подставляя по очереди эти значения в систему (1), находим собственные векторы.
61. Понятие сопряженного и самосопряженного оператора. Собственные числа самосопряженного оператора.
Определение. Сопряженным оператором к оператору называется такой оператор , который удовлетворяет равенству .
Определение. Оператор называется самосопряженным или симметричным (эрмитовым), если , т.е. . Оператор называется кососимметричным ( косоэрмитовым), если , т.е. . Оператор называется ортогональным (унитарным для ), если .
Собственные числа самосопряженного оператора.
Если собственные числа самосопряженного оператора различны, то отвечающие им собственные вектора ортогональны и если их число совпадает с размерностью пространства, то из них можно образовать ортонормированный базис.
Доказательство. Действительно, пусть матрицам А и В операторов отвечают два собственных числа a, b и их собственные вектора X,Y.
Тогда: ХтАY = Хт(АY)=Хт(aY)= a( ХтY), а с другой стороны
ХтАY = (ХтАт)Y=(АХ)тY=(bX)тY=(bХт)Y= b(ХтY).
Иными словами, a( ХтY)= b(ХтY), а так как a¹b, то (X,Y)=0