
- •1.Законы геометрической оптики. Абсолютный и относительный показатели преломления. Явление полного внутреннего отражения.
- •2.Электромагнитная теория света.
- •4. Интерференция света в тонких плёнках
- •5.Кольца Ньютона.
- •6. Интерферометры. Интерферометрия.
- •10. Дифракционная решетка и ее характеристики.
- •11. Дифракция рентгеновских лучей. Рентгеноструктурный анализ.
- •12. Поглощение и рассеяние света.
- •Электронная теория дисперсии светя
- •14.Эффект Доплера и его применение.
- •15. Естественный и поляризованный свет Естественный и поляризованный свет
2.Электромагнитная теория света.
В первой трети XIX в. произошел переворот в оптических представлениях. В результате работ Т. Юнга (Англия) Уравнение Максвелла и О. Ж. Френеля (Франция) старая ньютоновская корпускулярная теория, рассматривавшая свет как поток светоносных частиц, была отвергнута. Возродились на новой основе и в новом физико-математическом истолковании представления Гюйгенса о свете как волновом движении эфира. Крупным достижением физики XIX в. была выдвинутая английским ученым Джемсом Кларком Максвеллом (1831—1879) электромагнитная теория света (1865 г.), обобщившая опыты и теоретические построения многих физиков различных стран в области электромагнетизма, термодинамики и оптики.
Последователь Эрстедта и Фарадея, Максвелл разработал теорию электромагнитного поля. Математическим выражением нового учения явилась система уравнений, в равной мере относящихся как к электромагнитным, так и к оптическим явлениям и описывающих структуру электромагнитного поля. Из уравнений Максвелла в качестве основного следствия вытекал вывод о существовании электромагнитных волн, распространяющихся со скоростью света, и устанавливалась связь света с электромагнетизмом. Позднее существование электромагнитных волн было экспериментально доказано Генрихом Герцем (1857—1894) и явилось основой для всей радиотехники.
Физико-математические построения Максвелла сыграли важную роль в дальнейшем развитии естествознания и техники. Однако теория Максвелла не давала исчерпывающей характеристики всех электромагнитных явлений. Максвелл, как и все физики XIX в., исходил еще из предположения о существовании эфира — последней из мнимых «невесомых жидкостей», которая пережила и флогистон и теплород, но которой в конце концов предстояло разделить их судьбу.
В «Диалектике природы» Энгельс отмечал, что в области электричества еще предстоит сделать открытие, «подобное открытию Дальтона», т. е. атомистике, — открытие, «даю цее всей науке средоточие, а исследованию — прочную основу».(Ф Энгельс, Диалектика природы, стр. 84.) Прогноз Энгельса подтвердился, после того как была разработана электронная теория и учение об электричестве оказалось неразрывно связано с учением о строении атома.
Свет - электромагнитная волна, излучаемая атомами вещества. Электромагнитная волна представляет собой совокупность переменных электрического и магнитного полей, распространяющихся в пространстве со скоростью,
v = 1/(m·m0·e·e0)1/2 =c/(m·e)1/2 где m и e - магнитная и диэлектрическая проницаемость среды, m0 и e- постоянные, с - скорость света в вакууме.
Известно, что с = 3·108 м/с. В веществе скорость света
v = c/n, где n - абсолютный показатель преломления.
Изменение электрического и магнитного поля волны происходят в одинаковой фазе. Электрические и магнитные поля перпендикулярны друг другу. Мгновенный снимок волны изображен на рисунке.
3. Интерференция света. Расчет интерференционной картины от двух когерентных источников.
Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.
Волны — один из двух путей переноса энергии в пространстве (другой путь — корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него.
Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях. При этом оно наблюдается и у волн, распространяющихся в средах, и у электромагнитных волн . То есть интерференция является свойством волн как таковых и не зависит ни от свойств среды, ни от ее наличия. Чтобы понять ее механизм, проще всего вернуться к примеру волн на водной поверхности и представить себе, что каждая волна несет в себе инструкцию для элементов поверхности, например «подняться на 1 метр» или «опуститься на 30 см». В точке взаимодействия двух волн поверхность просуммирует две такие инструкции — в данном примере, она поднимется на 70 см (1 метр минус 30 см).
В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении.
Колебания когерентны, если разность их фаз постоянна во времени и при сложении колебаний получается колебание той же частоты.