
- •1. Строение мозгового вещества, роль отдельных составляющих элементов
- •1)Отростки
- •2)Генерация эл.Потенциала
- •2. Строение клеточной мембраны
- •3. Каналы мембраны, их виды, строение, функция
- •4. Мембранный потенциал покоя и механизм его формирования
- •5. Роль мембраны в формировании трансмембранной разности потенциалов
- •6. Механизм транспорта ионов через клеточную мембрану
- •Механизм генерации потенциала действия
- •8. Механизм распространения потенциала действия по волокну
- •9. Потенциал действия и его свойства
- •10. Правило «все или ничего»
- •11. Внутриклеточные постсинаптические потенциалы и их свойства
- •12. Рефрактерность, следовые процессы потенциала действия.
- •13. Что отражает критический уровень деполяризации мембраны и его цифровое значение.
- •14. Ионный насос и потенциал мембраны
- •15. Роль мембранных каналов в поддержании мембранного потенциала
- •16. Синапс и его строение
- •17. Виды синапсов и их роль в активности нейрона
- •18. Медиаторы, их виды и роль в синаптической передачи
- •19. Рецепторы клеточной мембраны и их роль в электрогенезе клетки
- •20. Механизм синаптической передачи
- •21. Центральное торможение, виды торможения
- •22. Различие механизмов пре- и постсинаптического торможения
- •23. Зрительный бугор: локализация, связи.
- •24. Роль ретикулярных ядер зрительного бугра в работе лкт
- •25. Базальные ганглии строение и функции
- •26. Строение ретикулярной формации ствола мозга
- •27. Основные центры ретикулярной формации ствола мозга
- •28. Строение и работа дыхательного центра
- •29. Сосудодвигательный центр – механизм регулирующих влияний
- •30. Основные функции ретикулярной формации ствола мозга
- •31. Восходящие и нисходящие влияния ретикулярной формации ствола мозга
- •32. Особенности свойств ретикулярных нейронов
- •33. Особенности нейрональной активности мозжечка
- •34. Механизмы нисходящих влияний мозжечка
- •35. Моховидные и лазающие волокна, их роль в функциональных механизмах мозжечка
- •36. Основные структуры лимбической системы
- •37. Гипоталамус - основные функции
- •38. Роль гипоталамуса в лимбической системе
- •39. Миндалина, гиппокамп - основные свойства и функции
- •40. Основные центры регуляции, представленные в гипоталамусе
- •41. Гипоталамус - регуляция деятельности гипофиза
- •42. Древняя, старая и новая кора - взаимоотношение и роль в интегративных механизмах мозга
- •43. Колончатый тип функциональной организации коры больших полушарий
- •44. Функциональная роль различных слоев новой коры.
- •45. Иррадиация и конвергенция в передаче возбуждения
- •46. Первичные, вторичные и ассоциативные проекционные зоны новой коры
- •47.Ритмы ээг,амплитудно-частотные характеристики,зоны регистрации.
- •48.Альфа-ритм,механизмы генерации.
- •49.Виды вп отличие вызванной активности от ээг.
- •51. Зрительный анализатор, корковый зрительный вп.
- •52. Слуховой анализатор
- •53. Особенности строения рецептивного аппарата соматосенсорной чувствительности.
- •54. Динамика показателей альфа-ритма в жизненном цикле человека.
- •55. Клеточный аппарат сетчатки.
39. Миндалина, гиппокамп - основные свойства и функции
Миндалина представляет собой довольно крупное ядерное образование (у человека - около 10 х 8 х 5 мм). Миндалина образует эфферентные связи с 1) гипоталамусом, преимущественно с той его частью, которая участвует в контроле функции гипофиза. Благодаря этому циркулирующие в крови гормоны контролируют активность этих нейронов, а они, в свою очередь, могут влиять на гипоталамус и, таким образом, на секрецию из гипофиза (обратная связь), а также участвовать в формах поведения, контролируемых этими гормонами. Миндалина образует также обширные связи с 2) обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного (размножение) поведения.
У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезают агрессивные аффекты. Электрическая стимуляция миндалины вызывает преимущественно отрицательные эмоции – гнев, ярость, страх. Двустороннее удаление миндалин резко снижает агрессивность животных. Спокойные животные могут, напротив, стать неуправляемо агрессивными. У таких животных нарушается способность оценивать поступающую информацию и соотносить её с эмоциональным поведением. Миндалина участвует в процессе выделения доминирующей эмоции и мотивации и выборе поведения в соответствии с ними. Миндалина – мощнейший модификатор эмоций. Повреждение миндалины и гиппокампа в процессе родов приводит к развитию эпилепсии. Миндалина и гиппокамп обладают низким детонаторным порогом – достаточно небольшого воздействия, чтобы нарушить их работу. Существуют указания на то, что кортикальные и медиальные ядра миндалевидного комплекса имеют отношение к регуляции пищевого поведения и многих висцеральных функций (регуляции частоты сердечных сокращений, работы желудочно-кишечного тракта, дыхательных движений).
Гиппокамп располагается в медиальной части височной доли. Гиппокамп получает афферентные входы от гиппокампальной извилины (получает входы почти от всех областей неокортекса и других отделов ГМ) , от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокампы обоих полушарий связаны между собой комиссурой.
1. Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Деятельность гиппокампа заключается в консолидации памяти – перехода кратковременной памяти в долговременную. Повреждение гиппокампа вызывает резкое нарушение усвоения новой информации, образования кратковременной и долговременной памяти. Также гиппокамп обладает способностью в ответ на стимуляцию отвечать очень длительной потенциацией, которая лежит в основе механизма формирования памяти. Существенным звеном в этой системе являются связи гиппокампа с неокортексом. Следовательно, гиппокамп, как, впрочем, и другие структуры лимбической системы, существенно влияет на функции неокортекса и на процессы научения. Это влияние осуществляется в первую очередь за счет создания эмоционального фона, который в значительной степени отражается на скорости образования любого условного рефлекса. Электрическое раздражение гиппокампальной извилины во время нейрохирургических операций может сопровождаться появлением мимолетных воспоминаний. Двустороннее удаление гиппокампа у обезьян и крыс приводит к нарушению способности выполнять ту или иную последовательность поведенческих актов.
2. Влияние на поведение также выражается в том, что гиппокамп влияет на реагирование организма на сигналы с малой вероятностью подкрепления. Комплекс «гиппокамп-гипоталамус» можно условно считать центром выдвижения гипотез, систем и различных комбинаций следов и стимулов. Все это позволяет говорить о важной роли гиппокампа в творческой деятельности мозга.
К миндалине и гиппокампу идут пути от височной доли коры, передающие информацию от зрительной, слуховой и соматической сенсорных систем. Установлены связи лимбической системы с лобными долями коры переднего мозга.