
- •Введение
- •Тема 1 линейные электрические цепи постоянного тока лекция 1. Элементы электрических цепей
- •1. Общие понятия и определения электрических цепей
- •2. Источники электрической энергии
- •3. Приемники электрической энергии
- •4. Основные топологические понятия и определения
- •4.1. Основы матричной теории графов
- •5. Законы ома и кирхгофа
- •Лекция 2. Методы анализа линейных электрических цепей постоянного тока
- •Анализ электрических цепей с применением
- •2. Анализ электрических цепей методом
- •2.1. Последовательное соединение элементов.
- •2.2. Параллельное соединение элементов.
- •Соединение элементов звездой или треугольником.
- •2.4. Метод эквивалентных преобразований.
- •Потенциальная диаграмма
- •3. Метод пропорциональных величин
- •4. Анализ электрических цепей методом
- •5. Метод наложения
- •6. Полезные для практики понятия и определения
- •6.1.Входные и взаимные проводимости ветвей
- •6.2. Теорема взаимности
- •6.3. Теорема компенсации
- •7. Методы анализа электрических цепей
- •7.1. Замена нескольких параллельных ветвей с источниками
- •7.2. Метод двух узлов
- •7.3. Метод узловых потенциалов
- •8. Анализ электрических цепей методом активного
- •9. Передача энергии от активного
- •Тема II. Нелинейные электрические цепи постоянного тока лекция 3. Элементы нелинейных электрических цепей постоянного тока
- •1. Основные понятия и определения
- •2. Способы формирования эквивалентных
- •3. Аппроксимация вах нелинейных элементов
- •3.1. Аппроксимация степенным полиномом.
- •3.2. Аппроксимация экспоненциальной функцией.
- •3.3. Аппроксимация применением гиперболического синуса.
- •Лекция 4. Методы анализа нэц постоянного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа
- •3. Графоаналитический метод анализа
- •4. Аналитический метод анализа нэц
- •5. Анализ нэц методом двух узлов
- •6. Анализ нэц постоянного тока методом
- •7. Преобразования в нэц постоянного тока
- •Тема III. Магнитные цепи лекция 5. Элементы теории магнитных цепей
- •1. Магнитная индукция
- •2. Магнитный поток и поткосцепление
- •3. Силовое действие магнитног поля
- •4.Индуктивность
- •4.1. Собственная индуктивность
- •4.2. Взаимная индуктивность
- •4.3. Магнитодвижущая (намагничивающая) сила
- •5. Магнитные свойства вещества
- •5.1 Намагничивание вещества
- •5.2. Намагниченность вещества
- •5.3. Напряженность магнитного поля
- •5.4. Магнитная проницаемость вещества.
- •5.5. Основные характеристики ферромагнитных
- •6. Закон полного тока
- •1. Определения, параметры и характеристики
- •2. Методы анализа магнитных цепей.
- •2.1. Определение м.Д.С. Неразветвленной магнитной цепи
- •2.2. Определение магнитного потока в неразветвленной
- •2.3. Расчет разветвленной магнитной цепи
- •Тема IV
- •1. Закон электромагнитной индукции
- •1.1. Правило Ленца
- •2. Э.Д.С. В проводнике, движущемся
- •3. Взаимное преобразование механической
- •3.1. Преобразование механической энергии в электрическую
- •3.2. Преобразование электрической энергии
- •4. Э.Д.С. Самоиндукции и взаимоиндукции
- •4.1. Принцип действия трансформатора
- •4.2. Вихревые токи
- •1. Энергия магнитного поля уединенного
- •2. Энергия магнитного поля в системе
- •3. Выражение энергии через характеристики
- •4. Механические силы в магнитном поле
- •Тема V.
- •2. Представление синусоидального тока (напряжения)
- •3. Комплексное представление синусоидального
- •Лекция 10. Комплексная форма сопротивления и проводимости элементов электрических цепей
- •1. Комплексное сопротивление
- •2. Комплексная проводимость
- •3. Особенности анализа линейных
- •3.1. Применение векторных диаграмм при анализе
- •3.2. Применение топографических диаграмм при анализе
- •Лекция 11. Энергетические характеристики электрических цепей синусоидального тока
- •1. Мгновенная мощность цепи с r, l и с
- •Применим к (11.19) выражение (11.7), тогда
- •3. Выражение мощности в комплексной форме
- •4. Передача энергии от активного
- •Лекция 12. Частотные свойства электрических цепей синусоидального тока
- •1. Резонанс токов
- •3. Резонанс напряжений
- •3.Частотная характеристика двухполюсника
- •Индуктивностью
- •1. Общие понятия и определения
- •2. Расчет электрических цепей с взаимной
- •2.1. Последовательное соединение двух
- •2.2. Параллельное соединение двух
- •2.3. Расчет разветвленной цепи с магнитносвязанными
- •3. Определение взаимной индуктивности
- •Лекция 14. Четырехполюсники и их параметры
- •1. Определение и классификация
- •2. Основные уравнения чтп
- •3. Свойства чтп
- •4. Формы записи уравнений четырехполюсника
- •5. Режимы чтп
- •5.1. Режимы холостого хода и короткого замыкания.
- •5.2. Рабочий режим чтп
- •6. Схемы замещения пассивного чтп
- •Лекция 15. Трехфазные электрические цепи
- •1. Трехфазная система э.Д.С.
- •2. Способы включения приемников электрической энергии
- •3. Основные схемы соединения трехфазных
- •3.1. Соединение элементов трехфазной цепи звездой.
- •3.2. Соединение элементов трехфазной цепи треугольником.
- •4. Мощность трехфазных цепей
- •5. Анализ трёхфазных линейных цепей
- •5.1. Расчёт схемы «звезда – звезда» с нулевым проводом.
- •5.2. Расчёт схемы «звезда – треугольник».
- •5.3. Анализ трехфазной цепи при наличии взаимоиндукции
- •6. Вращающееся магнитное поле
- •6.1. Магнитное поле катушки с синусоидальным током
- •6. 2. Магнитное поле системы из трех взаимно
- •7. Асинхронный двигатель
- •7.1. Принцип формирования вращающегося магнитного поля
- •7.2. Принцип действия асинхронного двигателя.
1. Мгновенная мощность цепи с r, l и с
ЭЛЕМЕНТАМИ
В общем случае мгновенная мощность определяется произведением тока на напряжение:
.
(11.1)
Определим мгновенную мощность для цепи с последовательно включенными R, L и С элементами (рис. 11.1). Пусть в этой цепи протекает ток
.
(11.2)
Он одинаков для всех элементов цепи.
Напряжение цепи определяется суммой падений напряжений на отдельных элементах
.
(11.3)
С учетом выражений (1.8) и (1.11) перепишем (11.3):
.
(11.4)
Подставляя в (11.4) выражение для i(t) и решая его, получим
.
(11.5)
Проведем более
детальный анализ выражения (11.5). Этому
выражению соответствует векторная
диаграмма рис. 11.1. В ней в качестве
исходного принят вектор тока
.
Вектор напряжения на индуктивности
опережает
ток, а вектор напряжения на емкости
отстает от тока на 90о.
Вектор напряжения на резисторе
совпадает по фазе с током.
П
роведем
сложение векторов. Для этого начало
вектора
переместим в точку конца вектора
,
а начало вектора
- в точку конца вектора
.
Результатом сложения является вектор
,
выходящий из начала вектора
в конец вектора
.
Угол j
определяет сдвиг фаз между током и
результирующим напряжением, т. е.
Соединим точки
концов двух векторов –
и
.
Обозначим вновь полученный вектор
.
Образовавшийся треугольник из векторов
и
называют треугольником
напряжений.
Для него справедливы следующие выражения:
причем
, (11.6)
, (11.7)
,
(11.8)
.
(11.9)
Теперь возвратимся к формированию выражения для мгновенной мощности. Подставим (11.2) и (11.5) в (11.1). Тогда выражение для мгновенной
мощности цепи рис. 10.1 примет вид:
.
(11.10)
Выражение (11.10) показывает, что мгновенная мощность цепи определяется суммой слагаемых мощностей каждого из элементов. Оценка каждого из слагаемых требует более детального анализа выражения (11.10).
2. АКТИВНАЯ, РЕАКТИВНАЯ, ПОЛНАЯ МОЩНОСТЬ
Для анализа (11.10) применим известные из курса тригонометрии
формулы преобразования:
.
Применяя их к (11.10), получим:
,
(11.11)
где I
– действующее значение тока, причем
Первые два слагаемых в (11.11) определяют мгновенную мощность, выделяемую на элементе R. Можно записать, что:
.
(11.12)
Как видно из (11.12), мгновенная мощность pR(t) содержит постоянную составляющую Р = RI2 и переменную, меняющуюся с удвоенной частотой. График рR(t) приведен на рис. 112. График наглядно показывает, что мощность рR(t) всегда положительна и изменяется от 0 (в момент t=0, k×T/2) до 2RI2 (в моменты (2k-1)× T/4), где Т=2p/w - период тока.
Среднее за период значение мощности обозначают Р и называют активной мощностью, причем
(11.13)
Обратимся к векторной диаграмме рис. 11.1. Учтем, что падение напряжения на резистивном элементе цепи рис. 10.1 – UR = R∙I = Uа∙cosφ. С учетом правой части равенства (11.6) перепишем (11.12) в виде:
. (11.14)
Первое слагаемое в правой части (11.14) полностью соответствует (5.13), т.е. определяет активную мощность цепи:
[Вт].
(11.15)
Выражение (11.15) используется на практике намного чаще, так как определяет зависимость активной мощности от сдвига фаз между действующими значениями тока и напряжения цепи. В силу этого коэффициент cos j называют коэффициентом мощности и обозначают l:
.
(11.16)
Продолжим анализ слагаемых в выражении для мгновенной мощности цепи – (11.11). В нем третье и четвертое слагаемые определяют мощность, выделяемую на реактивных элементах:
– индуктивности:
(11.17)
– емкости:
.
(11.18)
Каждое из этих слагаемых изменяется с удвоенной (относительно тока) частотой, но они имеют взаимно противоположные фазы (рис. 11.3). Так как постоянная составляющая в (11.17) и (11.18) отсутствует, то среднее значение каждого из них равно нулю. Однако сумма pL(t) и pC(t) отлична от нуля и определяет мгновенную мощность реактивных элементов (участков) цепи – pr(t).
Определим эту мощность:
. (11.19)