
- •Введение
- •Тема 1 линейные электрические цепи постоянного тока лекция 1. Элементы электрических цепей
- •1. Общие понятия и определения электрических цепей
- •2. Источники электрической энергии
- •3. Приемники электрической энергии
- •4. Основные топологические понятия и определения
- •4.1. Основы матричной теории графов
- •5. Законы ома и кирхгофа
- •Лекция 2. Методы анализа линейных электрических цепей постоянного тока
- •Анализ электрических цепей с применением
- •2. Анализ электрических цепей методом
- •2.1. Последовательное соединение элементов.
- •2.2. Параллельное соединение элементов.
- •Соединение элементов звездой или треугольником.
- •2.4. Метод эквивалентных преобразований.
- •Потенциальная диаграмма
- •3. Метод пропорциональных величин
- •4. Анализ электрических цепей методом
- •5. Метод наложения
- •6. Полезные для практики понятия и определения
- •6.1.Входные и взаимные проводимости ветвей
- •6.2. Теорема взаимности
- •6.3. Теорема компенсации
- •7. Методы анализа электрических цепей
- •7.1. Замена нескольких параллельных ветвей с источниками
- •7.2. Метод двух узлов
- •7.3. Метод узловых потенциалов
- •8. Анализ электрических цепей методом активного
- •9. Передача энергии от активного
- •Тема II. Нелинейные электрические цепи постоянного тока лекция 3. Элементы нелинейных электрических цепей постоянного тока
- •1. Основные понятия и определения
- •2. Способы формирования эквивалентных
- •3. Аппроксимация вах нелинейных элементов
- •3.1. Аппроксимация степенным полиномом.
- •3.2. Аппроксимация экспоненциальной функцией.
- •3.3. Аппроксимация применением гиперболического синуса.
- •Лекция 4. Методы анализа нэц постоянного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа
- •3. Графоаналитический метод анализа
- •4. Аналитический метод анализа нэц
- •5. Анализ нэц методом двух узлов
- •6. Анализ нэц постоянного тока методом
- •7. Преобразования в нэц постоянного тока
- •Тема III. Магнитные цепи лекция 5. Элементы теории магнитных цепей
- •1. Магнитная индукция
- •2. Магнитный поток и поткосцепление
- •3. Силовое действие магнитног поля
- •4.Индуктивность
- •4.1. Собственная индуктивность
- •4.2. Взаимная индуктивность
- •4.3. Магнитодвижущая (намагничивающая) сила
- •5. Магнитные свойства вещества
- •5.1 Намагничивание вещества
- •5.2. Намагниченность вещества
- •5.3. Напряженность магнитного поля
- •5.4. Магнитная проницаемость вещества.
- •5.5. Основные характеристики ферромагнитных
- •6. Закон полного тока
- •1. Определения, параметры и характеристики
- •2. Методы анализа магнитных цепей.
- •2.1. Определение м.Д.С. Неразветвленной магнитной цепи
- •2.2. Определение магнитного потока в неразветвленной
- •2.3. Расчет разветвленной магнитной цепи
- •Тема IV
- •1. Закон электромагнитной индукции
- •1.1. Правило Ленца
- •2. Э.Д.С. В проводнике, движущемся
- •3. Взаимное преобразование механической
- •3.1. Преобразование механической энергии в электрическую
- •3.2. Преобразование электрической энергии
- •4. Э.Д.С. Самоиндукции и взаимоиндукции
- •4.1. Принцип действия трансформатора
- •4.2. Вихревые токи
- •1. Энергия магнитного поля уединенного
- •2. Энергия магнитного поля в системе
- •3. Выражение энергии через характеристики
- •4. Механические силы в магнитном поле
- •Тема V.
- •2. Представление синусоидального тока (напряжения)
- •3. Комплексное представление синусоидального
- •Лекция 10. Комплексная форма сопротивления и проводимости элементов электрических цепей
- •1. Комплексное сопротивление
- •2. Комплексная проводимость
- •3. Особенности анализа линейных
- •3.1. Применение векторных диаграмм при анализе
- •3.2. Применение топографических диаграмм при анализе
- •Лекция 11. Энергетические характеристики электрических цепей синусоидального тока
- •1. Мгновенная мощность цепи с r, l и с
- •Применим к (11.19) выражение (11.7), тогда
- •3. Выражение мощности в комплексной форме
- •4. Передача энергии от активного
- •Лекция 12. Частотные свойства электрических цепей синусоидального тока
- •1. Резонанс токов
- •3. Резонанс напряжений
- •3.Частотная характеристика двухполюсника
- •Индуктивностью
- •1. Общие понятия и определения
- •2. Расчет электрических цепей с взаимной
- •2.1. Последовательное соединение двух
- •2.2. Параллельное соединение двух
- •2.3. Расчет разветвленной цепи с магнитносвязанными
- •3. Определение взаимной индуктивности
- •Лекция 14. Четырехполюсники и их параметры
- •1. Определение и классификация
- •2. Основные уравнения чтп
- •3. Свойства чтп
- •4. Формы записи уравнений четырехполюсника
- •5. Режимы чтп
- •5.1. Режимы холостого хода и короткого замыкания.
- •5.2. Рабочий режим чтп
- •6. Схемы замещения пассивного чтп
- •Лекция 15. Трехфазные электрические цепи
- •1. Трехфазная система э.Д.С.
- •2. Способы включения приемников электрической энергии
- •3. Основные схемы соединения трехфазных
- •3.1. Соединение элементов трехфазной цепи звездой.
- •3.2. Соединение элементов трехфазной цепи треугольником.
- •4. Мощность трехфазных цепей
- •5. Анализ трёхфазных линейных цепей
- •5.1. Расчёт схемы «звезда – звезда» с нулевым проводом.
- •5.2. Расчёт схемы «звезда – треугольник».
- •5.3. Анализ трехфазной цепи при наличии взаимоиндукции
- •6. Вращающееся магнитное поле
- •6.1. Магнитное поле катушки с синусоидальным током
- •6. 2. Магнитное поле системы из трех взаимно
- •7. Асинхронный двигатель
- •7.1. Принцип формирования вращающегося магнитного поля
- •7.2. Принцип действия асинхронного двигателя.
2. Источники электрической энергии
Одной из основных характеристик источников электрической энергии является Э.Д.С. Количественно Э.Д.С. характеризуется работой А, которая совершается сторонними силами при перемещении заряда в один Кулон в пределах источника
.
(1.1)
Графически Э.Д.С. изображают стрелкой в кружке. Направление стрелки совпадает с направлением сторонних сил. Перемещение заряда определяет ток источника. Прохождение тока сопровождается потерями на нагрев источника. Количественно потери удобно определять внутренним сопротивлением Rвн. Поэтому условное графическое обозначение источника Э.Д.С. представляет последовательное включение Э.Д.С. Е и внутреннего сопротивления Rвн (рис. 1.4).
На рисунке символами 1 – 1′ обозначены зажимы источника. Разность потенциалов на зажимах источника называется напряжением U[B]. Стрелками показаны положительные направления тока и напряжения. Когда ключ К разомкнут, ток в цепи равен нулю и напряжение на зажимах источника равно Э.Д.С. Замкнем ключ К. В цепи возникнет ток
.
(1.2)
При этом напряжение на зажимах источника станет равным
,
(1.3)
где U = I·R – падение напряжения.
Зависимость напряжения U на зажимах источника от тока I изображена на рис. 1.5, а. С увеличением тока напряжение на зажимах источника уменьшается. ВАХ источника Э.Д.С. представляет прямую линию, наклоненную к оси токов под углом , причем
arctg Rвн.
Если у источника Э.Д.С. Rвн = 0, то его ВАХ имеет вид прямой, параллельной оси токов (рис. 1.5, б). Такой источник называют идеальным. Напряжение на зажимах такого источника не зависит от тока.
Если у некоторого источника увеличивать Е и Rвн до бесконечности, то его ВАХ примет вид рис. 1.5, в. Такой источник питания называют источником тока. Ток такого источника IT определяется отношением
(1.4)
и не зависит от сопротивления нагрузки, так как Rвн Rн. Реальный источник тока имеет конечные значения Е и Rвн, а его условное графическое обозначение приведено на рис. 1.5, г.
При расчете электрических цепей реальный источник электрической энергии с конечными значениями Е и Rвн заменяют источником Э.Д.С. или источником тока (рис. 1.6 а, б). Ток в нагрузке Rн одинаков и равен
.
Для схемы рис. 1.6, а это очевидно и следует из того, что Rвн и Rн включены последовательно. Для схемы цепи по рис. 1.6, б известно, что ток IT = Е/Rвн распределяется обратно пропорционально параллельно включенным Rвн и Rн, т.е.:
=
.
Каким из двух источников воспользоваться, выбирает инженер.
Пример.
В схеме рис.1.6, а источник Э.Д.С. имеет параметры Е = 100В, Rвн =
2 Ом. Определить параметры эквивалентного источника тока в схеме рис. 1.6, б.
Решение:
.
Следовательно, параметры эквивалентной схемы рис. 1.6, б имеют значение:
IT = 50А; Rвн = 2 Ом.
Источники питания могут иметь постоянную Э.Д.С. - Е или переменную е(t), изменяющуюся во времени по заданному закону. В первом случае в цепи протекает постоянный ток, и она называется цепью постоянного тока. Во втором случае ток i(t) и напряжение u(t) переменные, поэтому цепь называется цепью переменного тока. В электротехнике чаще других применяются синусоидальные ток и напряжение.