
- •Введение
- •Тема 1 линейные электрические цепи постоянного тока лекция 1. Элементы электрических цепей
- •1. Общие понятия и определения электрических цепей
- •2. Источники электрической энергии
- •3. Приемники электрической энергии
- •4. Основные топологические понятия и определения
- •4.1. Основы матричной теории графов
- •5. Законы ома и кирхгофа
- •Лекция 2. Методы анализа линейных электрических цепей постоянного тока
- •Анализ электрических цепей с применением
- •2. Анализ электрических цепей методом
- •2.1. Последовательное соединение элементов.
- •2.2. Параллельное соединение элементов.
- •Соединение элементов звездой или треугольником.
- •2.4. Метод эквивалентных преобразований.
- •Потенциальная диаграмма
- •3. Метод пропорциональных величин
- •4. Анализ электрических цепей методом
- •5. Метод наложения
- •6. Полезные для практики понятия и определения
- •6.1.Входные и взаимные проводимости ветвей
- •6.2. Теорема взаимности
- •6.3. Теорема компенсации
- •7. Методы анализа электрических цепей
- •7.1. Замена нескольких параллельных ветвей с источниками
- •7.2. Метод двух узлов
- •7.3. Метод узловых потенциалов
- •8. Анализ электрических цепей методом активного
- •9. Передача энергии от активного
- •Тема II. Нелинейные электрические цепи постоянного тока лекция 3. Элементы нелинейных электрических цепей постоянного тока
- •1. Основные понятия и определения
- •2. Способы формирования эквивалентных
- •3. Аппроксимация вах нелинейных элементов
- •3.1. Аппроксимация степенным полиномом.
- •3.2. Аппроксимация экспоненциальной функцией.
- •3.3. Аппроксимация применением гиперболического синуса.
- •Лекция 4. Методы анализа нэц постоянного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа
- •3. Графоаналитический метод анализа
- •4. Аналитический метод анализа нэц
- •5. Анализ нэц методом двух узлов
- •6. Анализ нэц постоянного тока методом
- •7. Преобразования в нэц постоянного тока
- •Тема III. Магнитные цепи лекция 5. Элементы теории магнитных цепей
- •1. Магнитная индукция
- •2. Магнитный поток и поткосцепление
- •3. Силовое действие магнитног поля
- •4.Индуктивность
- •4.1. Собственная индуктивность
- •4.2. Взаимная индуктивность
- •4.3. Магнитодвижущая (намагничивающая) сила
- •5. Магнитные свойства вещества
- •5.1 Намагничивание вещества
- •5.2. Намагниченность вещества
- •5.3. Напряженность магнитного поля
- •5.4. Магнитная проницаемость вещества.
- •5.5. Основные характеристики ферромагнитных
- •6. Закон полного тока
- •1. Определения, параметры и характеристики
- •2. Методы анализа магнитных цепей.
- •2.1. Определение м.Д.С. Неразветвленной магнитной цепи
- •2.2. Определение магнитного потока в неразветвленной
- •2.3. Расчет разветвленной магнитной цепи
- •Тема IV
- •1. Закон электромагнитной индукции
- •1.1. Правило Ленца
- •2. Э.Д.С. В проводнике, движущемся
- •3. Взаимное преобразование механической
- •3.1. Преобразование механической энергии в электрическую
- •3.2. Преобразование электрической энергии
- •4. Э.Д.С. Самоиндукции и взаимоиндукции
- •4.1. Принцип действия трансформатора
- •4.2. Вихревые токи
- •1. Энергия магнитного поля уединенного
- •2. Энергия магнитного поля в системе
- •3. Выражение энергии через характеристики
- •4. Механические силы в магнитном поле
- •Тема V.
- •2. Представление синусоидального тока (напряжения)
- •3. Комплексное представление синусоидального
- •Лекция 10. Комплексная форма сопротивления и проводимости элементов электрических цепей
- •1. Комплексное сопротивление
- •2. Комплексная проводимость
- •3. Особенности анализа линейных
- •3.1. Применение векторных диаграмм при анализе
- •3.2. Применение топографических диаграмм при анализе
- •Лекция 11. Энергетические характеристики электрических цепей синусоидального тока
- •1. Мгновенная мощность цепи с r, l и с
- •Применим к (11.19) выражение (11.7), тогда
- •3. Выражение мощности в комплексной форме
- •4. Передача энергии от активного
- •Лекция 12. Частотные свойства электрических цепей синусоидального тока
- •1. Резонанс токов
- •3. Резонанс напряжений
- •3.Частотная характеристика двухполюсника
- •Индуктивностью
- •1. Общие понятия и определения
- •2. Расчет электрических цепей с взаимной
- •2.1. Последовательное соединение двух
- •2.2. Параллельное соединение двух
- •2.3. Расчет разветвленной цепи с магнитносвязанными
- •3. Определение взаимной индуктивности
- •Лекция 14. Четырехполюсники и их параметры
- •1. Определение и классификация
- •2. Основные уравнения чтп
- •3. Свойства чтп
- •4. Формы записи уравнений четырехполюсника
- •5. Режимы чтп
- •5.1. Режимы холостого хода и короткого замыкания.
- •5.2. Рабочий режим чтп
- •6. Схемы замещения пассивного чтп
- •Лекция 15. Трехфазные электрические цепи
- •1. Трехфазная система э.Д.С.
- •2. Способы включения приемников электрической энергии
- •3. Основные схемы соединения трехфазных
- •3.1. Соединение элементов трехфазной цепи звездой.
- •3.2. Соединение элементов трехфазной цепи треугольником.
- •4. Мощность трехфазных цепей
- •5. Анализ трёхфазных линейных цепей
- •5.1. Расчёт схемы «звезда – звезда» с нулевым проводом.
- •5.2. Расчёт схемы «звезда – треугольник».
- •5.3. Анализ трехфазной цепи при наличии взаимоиндукции
- •6. Вращающееся магнитное поле
- •6.1. Магнитное поле катушки с синусоидальным током
- •6. 2. Магнитное поле системы из трех взаимно
- •7. Асинхронный двигатель
- •7.1. Принцип формирования вращающегося магнитного поля
- •7.2. Принцип действия асинхронного двигателя.
4.Индуктивность
При изменении тока в контуре или катушке изменяется потокосцепление самоиндукции или собственное потокосцепление, обусловленное током в этом контуре, а также взаимное потокосцепление с другим контуром или катушкой.
Опыт показывает, что одинаковое изменение тока в двух контурах или катушках приводит в общем случае к различному изменению их потокосцепления. Особенности любого контура или катушки в отношении образования потокосцепления определяются их собственной и взаимной индуктивностью.
4.1. Собственная индуктивность
На зависимость между током и потокосцеплением уединенного контура влияют факторы, обусловленные его конструкцией (форма, размеры, среда). Для количественной оценки этого влияния введено понятие индуктивности контура или катушки.
Собственная индуктивность уединенного контура или катушки определяется отношением потокосцепления самоиндукции контура (катушки) к току в нем
[Гн].
(5.15)
В вакууме и неферромагнитных веществах это отношение постоянно, т. е. не зависит от значений тока и потокосцепления.
Наиболее распространенными элементами электротехнических устройств являются контуры, катушки, двухпроводные линии. Определим выражения для оценки их индуктивности.
Определим индуктивность участка l бесконечно длинной цилиндрической катушки, имеющей на этом участке витков диаметром D (рис. 5.6).
Магнитное поле такой катушки равномерное, а магнитная индукция определяется выражением (5.7) . Витки катушки плотно прилегают друг к другу, поэтому потокосцепление всех витков можно считать одинаковым и равным
,
S=
π·D2/4.
В соответствии с формулой (5.15) получаем
.
(5.16)
В практике применяются катушки различной формы, без соблюдения условия lk >> D, поэтому для расчетов используют расчетные кривые, эмпирические формулы, а также поправочные коэффициенты к формуле (5.16), приводимые в справочниках.
Схема участка двухпроводной линии приведена на рис. 5.7. Для определения индуктивности такой линии по (5.15) необходимо предварительно подсчитать потокосцепление. Поток, сцепленный с контуром, образованным прямым и обратным проводами линии, можно подсчитать по (5.9), учитывая, что поле линейного тока неравномерное.
Выделим между проводами элемент площади dS = l·dx, в пределах которой магнитную индукцию можно считать постоянной. Тогда
dФ = В·l·dx
или
.
-
Поток, образованный током прямого провода, определим суммированием элементарных потоков на всем расстоянии между проводами в свету:
.
Учитывая, что а >> r0, вместо a – r0 можно взять а:
.
Такой же поток и в том же направлении создается током обратного провода, поэтому общий поток равен 2Ф1:
.
Двухпроводная
линия образует уединенный контур,
поэтому потокосцепление
.
Применяя формулу (5.15) определяем индуктивность:
.
(5.17)
Формула (5.17) не учитывает внутреннюю индуктивность, образованную магнитным потоком внутри проводов, поэтому может применяться для приближенных расчетов.