
- •Введение
- •Тема 1 линейные электрические цепи постоянного тока лекция 1. Элементы электрических цепей
- •1. Общие понятия и определения электрических цепей
- •2. Источники электрической энергии
- •3. Приемники электрической энергии
- •4. Основные топологические понятия и определения
- •4.1. Основы матричной теории графов
- •5. Законы ома и кирхгофа
- •Лекция 2. Методы анализа линейных электрических цепей постоянного тока
- •Анализ электрических цепей с применением
- •2. Анализ электрических цепей методом
- •2.1. Последовательное соединение элементов.
- •2.2. Параллельное соединение элементов.
- •Соединение элементов звездой или треугольником.
- •2.4. Метод эквивалентных преобразований.
- •Потенциальная диаграмма
- •3. Метод пропорциональных величин
- •4. Анализ электрических цепей методом
- •5. Метод наложения
- •6. Полезные для практики понятия и определения
- •6.1.Входные и взаимные проводимости ветвей
- •6.2. Теорема взаимности
- •6.3. Теорема компенсации
- •7. Методы анализа электрических цепей
- •7.1. Замена нескольких параллельных ветвей с источниками
- •7.2. Метод двух узлов
- •7.3. Метод узловых потенциалов
- •8. Анализ электрических цепей методом активного
- •9. Передача энергии от активного
- •Тема II. Нелинейные электрические цепи постоянного тока лекция 3. Элементы нелинейных электрических цепей постоянного тока
- •1. Основные понятия и определения
- •2. Способы формирования эквивалентных
- •3. Аппроксимация вах нелинейных элементов
- •3.1. Аппроксимация степенным полиномом.
- •3.2. Аппроксимация экспоненциальной функцией.
- •3.3. Аппроксимация применением гиперболического синуса.
- •Лекция 4. Методы анализа нэц постоянного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа
- •3. Графоаналитический метод анализа
- •4. Аналитический метод анализа нэц
- •5. Анализ нэц методом двух узлов
- •6. Анализ нэц постоянного тока методом
- •7. Преобразования в нэц постоянного тока
- •Тема III. Магнитные цепи лекция 5. Элементы теории магнитных цепей
- •1. Магнитная индукция
- •2. Магнитный поток и поткосцепление
- •3. Силовое действие магнитног поля
- •4.Индуктивность
- •4.1. Собственная индуктивность
- •4.2. Взаимная индуктивность
- •4.3. Магнитодвижущая (намагничивающая) сила
- •5. Магнитные свойства вещества
- •5.1 Намагничивание вещества
- •5.2. Намагниченность вещества
- •5.3. Напряженность магнитного поля
- •5.4. Магнитная проницаемость вещества.
- •5.5. Основные характеристики ферромагнитных
- •6. Закон полного тока
- •1. Определения, параметры и характеристики
- •2. Методы анализа магнитных цепей.
- •2.1. Определение м.Д.С. Неразветвленной магнитной цепи
- •2.2. Определение магнитного потока в неразветвленной
- •2.3. Расчет разветвленной магнитной цепи
- •Тема IV
- •1. Закон электромагнитной индукции
- •1.1. Правило Ленца
- •2. Э.Д.С. В проводнике, движущемся
- •3. Взаимное преобразование механической
- •3.1. Преобразование механической энергии в электрическую
- •3.2. Преобразование электрической энергии
- •4. Э.Д.С. Самоиндукции и взаимоиндукции
- •4.1. Принцип действия трансформатора
- •4.2. Вихревые токи
- •1. Энергия магнитного поля уединенного
- •2. Энергия магнитного поля в системе
- •3. Выражение энергии через характеристики
- •4. Механические силы в магнитном поле
- •Тема V.
- •2. Представление синусоидального тока (напряжения)
- •3. Комплексное представление синусоидального
- •Лекция 10. Комплексная форма сопротивления и проводимости элементов электрических цепей
- •1. Комплексное сопротивление
- •2. Комплексная проводимость
- •3. Особенности анализа линейных
- •3.1. Применение векторных диаграмм при анализе
- •3.2. Применение топографических диаграмм при анализе
- •Лекция 11. Энергетические характеристики электрических цепей синусоидального тока
- •1. Мгновенная мощность цепи с r, l и с
- •Применим к (11.19) выражение (11.7), тогда
- •3. Выражение мощности в комплексной форме
- •4. Передача энергии от активного
- •Лекция 12. Частотные свойства электрических цепей синусоидального тока
- •1. Резонанс токов
- •3. Резонанс напряжений
- •3.Частотная характеристика двухполюсника
- •Индуктивностью
- •1. Общие понятия и определения
- •2. Расчет электрических цепей с взаимной
- •2.1. Последовательное соединение двух
- •2.2. Параллельное соединение двух
- •2.3. Расчет разветвленной цепи с магнитносвязанными
- •3. Определение взаимной индуктивности
- •Лекция 14. Четырехполюсники и их параметры
- •1. Определение и классификация
- •2. Основные уравнения чтп
- •3. Свойства чтп
- •4. Формы записи уравнений четырехполюсника
- •5. Режимы чтп
- •5.1. Режимы холостого хода и короткого замыкания.
- •5.2. Рабочий режим чтп
- •6. Схемы замещения пассивного чтп
- •Лекция 15. Трехфазные электрические цепи
- •1. Трехфазная система э.Д.С.
- •2. Способы включения приемников электрической энергии
- •3. Основные схемы соединения трехфазных
- •3.1. Соединение элементов трехфазной цепи звездой.
- •3.2. Соединение элементов трехфазной цепи треугольником.
- •4. Мощность трехфазных цепей
- •5. Анализ трёхфазных линейных цепей
- •5.1. Расчёт схемы «звезда – звезда» с нулевым проводом.
- •5.2. Расчёт схемы «звезда – треугольник».
- •5.3. Анализ трехфазной цепи при наличии взаимоиндукции
- •6. Вращающееся магнитное поле
- •6.1. Магнитное поле катушки с синусоидальным током
- •6. 2. Магнитное поле системы из трех взаимно
- •7. Асинхронный двигатель
- •7.1. Принцип формирования вращающегося магнитного поля
- •7.2. Принцип действия асинхронного двигателя.
9. Передача энергии от активного
ДВУХПОЛЮСНИКА НАГРУЗКЕ
Если нагрузка R подключена к активному двухполюснику (рис. 2.16), то через нее потечет ток
и будет выделятся мощность
.
(2.24)
Выясним, каким должно быть соотношение между сопротивлением нагрузки R и внутренним сопротивлением двухполюсника Rвн, чтобы мощность, выделяемая на сопротивлении нагрузки была максимальной и чему при этом будет равен к.п.д. передачи. Для этого найдем первую производную Р по R и приравняем ее нулю:
Производная равна нулю при
R = Rвн. (2.25)
Так как вторая
производная
,
то равенство (2.25) соответствует максимуму
функции Р =
f(R).
Подставив (2.25) в (2.24) определим выражение для максимальной мощности
(2.26)
Чтобы определить коэффициент полезного действия найдем мощность, выделяемую двухполюсником
.
Тогда коэффициент полезного действия η определится отношением
(2.27)
Легко видеть, что максимальная мощность в нагрузке выделяется при η = 0,5. Режим работы, при котором R = Rвн называется согласованным. Такой режим важен при передаче мощности от маломощных датчиков, усилителей и т. п. в нагрузку. При этом низким значением к.п.д. пренебрегают.
При передаче больших мощностей в реальных линиях передач (рис.2.16, б) к.п.д. должен быть максимально большим 0,94 ÷ 0,97, а напряжение на нагрузке U2 может быть лишь на несколько процентов меньше напряжения источника U1. Чтобы обеспечить оговоренные условия передачи энергии необходимо выбирать R2 >> R, где R – сопротивление линии передачи.
На рис. 2.16, в приведены графики мощности в начале линии Р1, мощности в нагрузке Р2 и к.п.д. Графики построены по уравнениям:
Р1 = U1·I; P2 = U1·I – I2·R;
.
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАЧИ
2.1. Как определяются знаки членов уравнений, составленных:
а) по первому закону Кирхгофа,
б) по второму закону Кирхгофа?
2.2. Составьте уравнения по первому закону Кирхгофа для всех узлов схемы рис. 2.7, б.
2.3. Составьте уравнения по второму закону Кирхгофа для всех контуров схемы рис. 2.6, б.
2.4. Какое соединение участков электрической цепи называется последовательным? Приведите соотношение для эквивалентного сопротивления цепи из n последовательно соединенных сопротивлений.
2.5. Какое соединение участков электрической цепи называется параллельным? Приведите соотношение для эквивалентного сопротивления цепи из n параллельно соединенных сопротивлений.
2.6. Приведите схемы соединений треугольником и звездой. Определите значение элементов эквивалентного соединения треугольником, если в схеме рис. 2.4, а R1 = R2 = R3 = 10 Ом.
2.7. В каких случаях возможно и целесообразно применять к анализу электрических цепей метод эквивалентных преобразований? В чем состоит суть этого метода?
2.8. В схеме рис. 2.6, б определите значение источника Э.Д.С. Е, если известно, что R1 = R3 =2 Ом, R2 = R4,5 = 10 Ом, а I3 = 2 А.
2.9. В каких случаях целесообразно применение метода контурных токов? Как определяются значения контурных сопротивлений и контурных Э.Д.С., взаимных сопротивлений?
2.10. В чем состоит суть междуузлового метода анализа электрической цепи? Как определяются знаки Э.Д.С. в выражении для междуузлового напряжения?
2.11. Для каких случаев расчета электрических цепей целесообразно применять метод узловых потециалов?
2.12. Для каких случаев расчета электрических цепей применяется метод активного эквивалентного двухполюсника?
2.13. Сформулируйте правила определения параметров активного эквивалентного двухполюсника.
2.14. В схеме рис. 2.6, б известно: Е = 32,8 В, R1 = R3 = 2 Ом, а R2 = R4,5 = 10 Ом. Определите ток I3 методом активного эквивалентного двухполюсника.