
- •Введение
- •Тема 1 линейные электрические цепи постоянного тока лекция 1. Элементы электрических цепей
- •1. Общие понятия и определения электрических цепей
- •2. Источники электрической энергии
- •3. Приемники электрической энергии
- •4. Основные топологические понятия и определения
- •4.1. Основы матричной теории графов
- •5. Законы ома и кирхгофа
- •Лекция 2. Методы анализа линейных электрических цепей постоянного тока
- •Анализ электрических цепей с применением
- •2. Анализ электрических цепей методом
- •2.1. Последовательное соединение элементов.
- •2.2. Параллельное соединение элементов.
- •Соединение элементов звездой или треугольником.
- •2.4. Метод эквивалентных преобразований.
- •Потенциальная диаграмма
- •3. Метод пропорциональных величин
- •4. Анализ электрических цепей методом
- •5. Метод наложения
- •6. Полезные для практики понятия и определения
- •6.1.Входные и взаимные проводимости ветвей
- •6.2. Теорема взаимности
- •6.3. Теорема компенсации
- •7. Методы анализа электрических цепей
- •7.1. Замена нескольких параллельных ветвей с источниками
- •7.2. Метод двух узлов
- •7.3. Метод узловых потенциалов
- •8. Анализ электрических цепей методом активного
- •9. Передача энергии от активного
- •Тема II. Нелинейные электрические цепи постоянного тока лекция 3. Элементы нелинейных электрических цепей постоянного тока
- •1. Основные понятия и определения
- •2. Способы формирования эквивалентных
- •3. Аппроксимация вах нелинейных элементов
- •3.1. Аппроксимация степенным полиномом.
- •3.2. Аппроксимация экспоненциальной функцией.
- •3.3. Аппроксимация применением гиперболического синуса.
- •Лекция 4. Методы анализа нэц постоянного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа
- •3. Графоаналитический метод анализа
- •4. Аналитический метод анализа нэц
- •5. Анализ нэц методом двух узлов
- •6. Анализ нэц постоянного тока методом
- •7. Преобразования в нэц постоянного тока
- •Тема III. Магнитные цепи лекция 5. Элементы теории магнитных цепей
- •1. Магнитная индукция
- •2. Магнитный поток и поткосцепление
- •3. Силовое действие магнитног поля
- •4.Индуктивность
- •4.1. Собственная индуктивность
- •4.2. Взаимная индуктивность
- •4.3. Магнитодвижущая (намагничивающая) сила
- •5. Магнитные свойства вещества
- •5.1 Намагничивание вещества
- •5.2. Намагниченность вещества
- •5.3. Напряженность магнитного поля
- •5.4. Магнитная проницаемость вещества.
- •5.5. Основные характеристики ферромагнитных
- •6. Закон полного тока
- •1. Определения, параметры и характеристики
- •2. Методы анализа магнитных цепей.
- •2.1. Определение м.Д.С. Неразветвленной магнитной цепи
- •2.2. Определение магнитного потока в неразветвленной
- •2.3. Расчет разветвленной магнитной цепи
- •Тема IV
- •1. Закон электромагнитной индукции
- •1.1. Правило Ленца
- •2. Э.Д.С. В проводнике, движущемся
- •3. Взаимное преобразование механической
- •3.1. Преобразование механической энергии в электрическую
- •3.2. Преобразование электрической энергии
- •4. Э.Д.С. Самоиндукции и взаимоиндукции
- •4.1. Принцип действия трансформатора
- •4.2. Вихревые токи
- •1. Энергия магнитного поля уединенного
- •2. Энергия магнитного поля в системе
- •3. Выражение энергии через характеристики
- •4. Механические силы в магнитном поле
- •Тема V.
- •2. Представление синусоидального тока (напряжения)
- •3. Комплексное представление синусоидального
- •Лекция 10. Комплексная форма сопротивления и проводимости элементов электрических цепей
- •1. Комплексное сопротивление
- •2. Комплексная проводимость
- •3. Особенности анализа линейных
- •3.1. Применение векторных диаграмм при анализе
- •3.2. Применение топографических диаграмм при анализе
- •Лекция 11. Энергетические характеристики электрических цепей синусоидального тока
- •1. Мгновенная мощность цепи с r, l и с
- •Применим к (11.19) выражение (11.7), тогда
- •3. Выражение мощности в комплексной форме
- •4. Передача энергии от активного
- •Лекция 12. Частотные свойства электрических цепей синусоидального тока
- •1. Резонанс токов
- •3. Резонанс напряжений
- •3.Частотная характеристика двухполюсника
- •Индуктивностью
- •1. Общие понятия и определения
- •2. Расчет электрических цепей с взаимной
- •2.1. Последовательное соединение двух
- •2.2. Параллельное соединение двух
- •2.3. Расчет разветвленной цепи с магнитносвязанными
- •3. Определение взаимной индуктивности
- •Лекция 14. Четырехполюсники и их параметры
- •1. Определение и классификация
- •2. Основные уравнения чтп
- •3. Свойства чтп
- •4. Формы записи уравнений четырехполюсника
- •5. Режимы чтп
- •5.1. Режимы холостого хода и короткого замыкания.
- •5.2. Рабочий режим чтп
- •6. Схемы замещения пассивного чтп
- •Лекция 15. Трехфазные электрические цепи
- •1. Трехфазная система э.Д.С.
- •2. Способы включения приемников электрической энергии
- •3. Основные схемы соединения трехфазных
- •3.1. Соединение элементов трехфазной цепи звездой.
- •3.2. Соединение элементов трехфазной цепи треугольником.
- •4. Мощность трехфазных цепей
- •5. Анализ трёхфазных линейных цепей
- •5.1. Расчёт схемы «звезда – звезда» с нулевым проводом.
- •5.2. Расчёт схемы «звезда – треугольник».
- •5.3. Анализ трехфазной цепи при наличии взаимоиндукции
- •6. Вращающееся магнитное поле
- •6.1. Магнитное поле катушки с синусоидальным током
- •6. 2. Магнитное поле системы из трех взаимно
- •7. Асинхронный двигатель
- •7.1. Принцип формирования вращающегося магнитного поля
- •7.2. Принцип действия асинхронного двигателя.
8. Анализ электрических цепей методом активного
ЭКВИВАЛЕНТНОГО ДВУХПОЛЮСНИКА
При анализе сложных электрических цепей часто интересуются элек-трическим состоянием лишь одной ветви. В таком случае полезен метод эк-вивалентного генератора (метод активного эквивалентного двухполюсника). Обоснованием данного метода является теорема об активном эквивалентном двухполюснике. Теорема утверждает, что любую, сколь угодно сложную электрическую цепь или ее часть, можно представить активным эквивалентным двухполюсником с параметрами Еэкв и Rэкв. Режим работы ветви, присоединенной к двухполюснику, при этом не изменится.
Пусть анализу подлежит схема электрической цепи, приведенной на рис. 2.14, а. Предположим, что в этой цепи нас интересуют напряжение и ток только одной ветви – R3. Решим задачу применением метода активного эквивалентного двухполюсника. Для этого всю схему, кроме ветви R3, представим активным двухполюсником (рис. 2.14, б). К зажимам двухполюсника а и б присоединим ветвь R3.
Параметры двухполюсника Rэкв и Еэкв определяются составом и топологией схемы цепи рис. 2.14, а. Поэтому режим работы ветви R3 не изменился. Но теперь для определения тока в ней достаточно применить закон Ома:
(2.23)
В этом и заключается преимущество рассматриваемого метода.
Для решения (2.23) необходимо определить значения Еэкв и Rэкв. Значение Еэкв определяют исходя из того, что напряжение Uхх на разомкнутых зажимах источника равно значению его Э.Д.С. – Еэкв.
Разомкнем зажимы а, б. Схема рис. 2.14, а примет вид рис. 2.15, а. Напряжение между разомкнутыми узлами а, б – Uхх = Еэкв. Схема рис. 2.15, а позволяет определить это напряжение, используя принцип суперпозиции. Для этого последовательно определяем напряжение узла а, затем узла б, а затем вычисляем разность напряжений.
Напряжение узла а:
Uа = I1 ∙ R2 = E ∙ R2/(R1 + R2).
Напряжение узла б:
Uб = I ∙ R4.
Тогда
Эквивалентное сопротивление активного двухполюсника – Rэкв находится также относительно разомкнутых зажимов а, б. Однако дополнительно требуется исключить источники электрической энергии. Правила
исключения источников заключаются в следующем.
При исключении источника Э.Д.С. полагают, что напряжение на его зажимах и внутреннее сопротивление равны нулю. Поэтому зажимы источника Э.Д.С. замыкают накоротко.
При исключении источника тока полагают, что ток источника равен нулю, а внутреннее сопротивление – бесконечности. Поэтому зажимы источника тока разрываются.
После исключения источников электрической энергии схема рис. 2.15, а приходит к виду рис. 2.15, б (полагаем, что между узлами а, б сохраняется режим холостого хода). Теперь очевидно, что эквивалентное сопротивление активного двухполюсника – Rэкв определится выражением:
.
Подставляя выражения, полученные для Еэкв и Rэкв в (2.23), получим:
Таким образом, метод активного эквивалентного двухполюсника существенно упрощает процесс анализа, но требует определенных навыков в преобразовании топологии схемы к удобному и наглядному виду.