
- •Область применения теплообменных аппаратов в химической технологии и основные требования к теплообменным аппаратам.
- •Виды теплоносителей.
- •Выбор направления движения рабочих сред и их конечных температур и скорости движения.
- •Общий подход к расчету рекуперативного теплообменника.
- •Теплообменники с поверхностью теплообмена изготовленной из труб. Змеевиковые теплообменники.
- •Оросительные змеевиковые теплообменники.
- •Теплообменник типа «труба в трубе».
- •Кожухотрубные теплообменники.
- •Теплообменники с трубками Фильда.
- •Способы крепления труб к трубной доске.
- •Способы разбивки трубной доски.
- •Пластинчатые теплообменники.
- •Теплообменники с рубашкой.
- •Спиральные теплообменники.
- •Последовательность расчета спирального теплообменника.
- •Пластинчато – ребристые теплообменники. (прт)
- •Ламельные теплообменники.
- •Аппараты воздушного охлаждения (аво).
- •Конструкция оребренных труб.
- •Теплообменники из не металлических материалов.
- •Вертикальный прямоугольно – блочный углеграфитовый теплообменник.
- •Кожухоблочные углеграфитовые теплообменники.
- •Теплообменные аппараты из фторопласта.
- •Область применения теплообменников из фторопласта.
- •Погружной тип (1)кожухотрубный тип Регенеративные теплообменные аппараты.
- •Общая схема расчета рта.
- •Тепловые трубы.
- •Смесительные теплообменники.
- •Порядок расчета смесительных теплообменников.
Теплообменники из не металлических материалов.
В химической промышленности приходится подводить или отводить тепло в высокоагрессивных средах, в которых не могут работать даже высоко легированные стали, титан и т.д. Для передачи тепла в таких условиях используют теплообменники из неметаллических материалов:
1. углеграфитовые теплообменники.
Графит имеет низкие прочностные свойства, чувствителен к местным напряжениям, легко крошится, поэтому конструкции теплообменников должны иметь свои особенности. Существуют следующие конструкции углеграфитовых теплообменников:
прямоугольно–блочные
кожухо–блочные
кожухо–трубочные
пластинчатые
оросительные
Поверхность теплообменника 1 – 120 м2, диапазон температур (-10°) – (+300°), рабочее давление 0,5МПа.
Вертикальный прямоугольно – блочный углеграфитовый теплообменник.
Выполняется из прямоугольных блоков углеграфита марки МГ, размером 350х350х350 или 700х350х350. В блоке выполняется система взаимно перпендикулярных каналов.
Вертикальные каналы соединяются с помощью присоединительных блоков, штуцера ввода и вывода теплоносителей. Горизонтальные каналы с помощью боковых крышек
образуют многоходовое пространство. Крышки выполняются литыми или сварными, при необходимости они могут покрываться эмалью. Уплотнение блоков и крышек осуществляется с помощью прокладок и стяжных шпилек.
Кожухоблочные углеграфитовые теплообменники.
С целью повышения допускаемого рабочего давления, углеграфитовые блоки выполняются цилиндирической формы и помещаются в стальной кожух, воспринимающий на себя основную нагрузку возникающую из – за повышенного давления внутри аппарата. Цилиндрические блоки имеют системы вертикальных каналов, радиально–горизонтальное и центральное отверстия большого диаметра.
Чаще всего такие конструкции предполагают конденсацию в пространстве ограниченным кожухом и внешней поверхностью блоков, а так же горизонтальных каналов блоков. Конденсат отводится по кольцевому зазору и центральному каналу.
Теплообменные аппараты из фторопласта.
Это современный эффективный вид теплообменного оборудования. Фторопласт характеризуется высокой стойкостью, гидрофобностью и высокой диэлектрической проницаемостью. Этот материал стоек практически во всех коррозионно-активных средах, однако его устойчивость зависит от температуры, давления и концентрации среды. Теплообменник из фторопласта изготавливается с поверхностью теплообмена от 1 – 40 м2. Давление в трубном пространстве при температуре 150°С до 0,25 МПа. При температуре 20°С до 1 МПа. В межтрубном пространстве 0,1 МПа при 150°С, до 0,6 МПа при 20°С. Удельная теплоемкость от 4,4 – 9 КВт/м2.
Гидрофобность
фторопластовой теплообменной поверхности
способствует снижению отложения и
облегчает их удаление, что обеспечивает
практически постоянный коэффициент
теплопередачи на протяжении всего
периода эксплуатации. Электроизоляционные
свойства фторопласта обеспечивают
высокую работоспособность аппарата
при проведении электрохимических
процессах в жидких средах. Трубные пучки
изготавливаются из трубок диаметром 3
и 5 мм с толщиной стенки соответствующей
0,4 и 0,6 мм. Благодаря малым толщинам
стенки, несмотря на невысокую
теплопроводность фторопласта, достигаются
значительные величины коэффициента
теплопередачи от 60 – 120
для
емкостей без перемешивания, 170 – 400
для
емкостей с перемешиванием.