
- •1. Понятие коммутации. Виды коммутации. Коммутация каналов, сообщений и пакетов (данных).
- •2. Протокол. Иерархическая организация протоколов. Интерфейсы. Сервисные и протокольные блоки. Сервис, ориентированный на соединение и неориентированный на соединение.
- •3. Эталонная модель взаимодействия открытых систем.
- •4. Протокольный стек tcp/ip
- •6. Принципы передачи аналогового голосового сигнала по цифровым каналам
- •9. Проблема управления потоками в сетях и способы ее решения. Контроль ошибок. Виды arq.
- •10. Лвс и эталонная модель взаимодействия открытых систем. Понятие о методах доступа. Структура семейства стандартов ieee 802.
- •14. Fast Ethernet 100 base –t4. Особенности реализации физического уровня.
- •15. Понятие о Gigabit Ethernet Особенности реализации mac –уровня
- •16. Принципы организации межсетевых взаимодействий. Мосты, маршрутизаторы и шлюзы. (Назначение и общие характеристики ).
- •24. Особенности iPv6 адресации. Структура заголовка пакета iPv6.
- •25. Принципы мультиплексирования. Мультиплексирование на основе разделения частот и времени.
- •26. Каналы т1/е1. Понятие об иерархии цифровых каналов pdh. Принципы синхронизации в сетях pdh.
- •27. Сети sonet/sdh. Общие принципы функционирования сетей sonet/sdh. Протокольный стек.
- •30. Топология и оборудование сетей sonet/sdh
- •31 . Средства обеспечения надежности сетей sonet/sdh.
- •33. Сети Frame relay. Принципы функционирования. Структура протокольного стека.
- •Структура стека
- •37. Структура ячейки atm.
- •38 .Atm. Типы трафиков и классы Сервисов. Протоколы aal.
- •39. Атм. Категории сервисов. Параметры трафика и качества сервиса. Понятие о трафик контракте.
30. Топология и оборудование сетей sonet/sdh
Базовые топологии реальных сетей SDH:
Топология
"точка - точка", реализованная с
использованием ТМ:
Топология
кольцо
Топология
"кольцо - кольцо"
Ниже перечислены устройства, которые могут входить в сеть технологии SONET/ SDH.
Терминальные устройства (Terminal, Т), называемые также сервисными адаптерами (Service Adapter, SA), принимают пользовательские данные от низкоскоростных каналов технологии PDH (типа Т1/Е1 или ТЗ/ЕЗ) и преобразуют их в кадры STS-n. (Далее аббревиатура STS-n используется как общее обозначение для кадров SONET/SDH.)
Мультиплексоры (Muliplexers) принимают данные от терминальных устройств и мультиплексируют потоки кадров разных скоростей STS-n в кадры более высокой иерархии STS-m.
Мультиплексоры «ввода-вывода» (Add-Drop Multiplexers) могут принимать и передавать транзитом поток определенной скорости STS-n, вставляя или удаляя «на ходу», без полного демультиплексирования, пользовательские данные, принимаемые с низкоскоростных входов.
Цифровые кросс-коннекторы (Digital Cross-Connect, DCC), называемые также аппаратурой оперативного переключения (АОП), предназначены для мультиплексирования и постоянной коммутации высокоскоростных потоков STS-n различного уровня между собой (на рис. 6.7 не показаны). Кросс-коннектор представляет собой разновидность мультиплексора, основное назначение которого - коммутация высокоскоростных потоков данных, возможно, разной скорости. Кросс-коннекторы образуют магистраль сети SONET/SDH.
Регенераторы сигналов, используемые для восстановления мощности и формы сигналов, прошедших значительное расстояние по кабелю. На практике иногда сложно провести четкую грань между описанными устройствами, так как многие производители выпускают многофункциональные устройства, которые включают терминальные модули, модули «ввода-вывода», а также модули кросс-коннекторов.
31 . Средства обеспечения надежности сетей sonet/sdh.
Отказоустойчивость сети SONET/SDH встроена в ее основные протоколы. Этот механизм называется автоматическим защитным переключением - Automatic Protection Switching, APS. Существуют два способа его работы. В первом способе защита осуществляется по схеме 1:1. Для каждого рабочего волокна (и обслуживающего его порта) назначается резервное волокно. Во втором способе, называемом 1:n, для защиты n волокон назначается только одно защитное волокно.
В схеме защиты 1:1 данные передаются как по рабочему, так и по резервному волокну. При выявлении ошибок принимающий мультиплексор сообщает передающему, какое волокно должно быть рабочим. Обычно при защите 1:1 используется схема двух колец, похожая на двойные кольца FDDI (рис. 6.10), но только с одновременной передачей данных в противоположных направлениях. При обрыве кабеля между двумя мультиплексорами происходит сворачивание колец, и, как и в сетях FDDI, из двух колец образуется одно рабочее.
Two fiber unidirectional path switched ring (SNCP Ring):
1:3 Protection:
Схема организации защиты потоков по технологии MS SPRing:
32. Принципы технологии WDM. Разновидности. Конфигурации сетей.
WDM (разделения по длине волны - Wave Division Multiplexing) – технология оптического мультиплексирования с разделением по длине волны – технология «окрашивания» волокна
Позволяет передавать по одному волокну до 320 несущих и обеспечивает скорость передачи до нескольких Тбит/с
Технология транспортных сетей.
Принцип работы технологии WDM:
Разновидности:
CWDM (Coarse WDM) – грубое спектральное уплотнение
Разнос каналов составляет 2500 ГГц или ~ 20 нм
Широко используется на городских сетях
Сравнительно недорогие системы
DWDM (Dense WDM) – плотное спектральное уплотнение
Разнос каналов составляет 100 ГГц или ~ 0,8 нм
В основном магистральные сети
Дорогостоящее производство
HDWDM (High Dense WDM) – высокоплотное спектральное уплотнение
Разнос каналов составляет 50 ГГц, 25 ГГц и 12, 5 ГГц
Топологии сети WDM:
Линейная (точка-точка);
Кольцо (2 волокна, 4 волокна);
Смешанная (ячеистая)