
- •1 Внешние воздействующие факторы. Классификация.
- •Механические и внешние воздействующие факторы:
- •Климатические ввф.
- •2 Внешние воздействующие факторы космической среды.
- •4. Особенности проекторования системы виброизоляции при однонаправленной схеме нагружения
- •5. Конструктивные особенности системы виброизоляции
- •Система с 2-мя плоскостями симметрии.
- •Система с одной плоскость симметрии.
- •Система без плоскостей симметрии
- •6.Виды диссипативных сил, действующих в системе виброизоляции. Их разновидности и реализация в виброизоляторе. Основные виды диссипативных сил.
- •7.Вынужденные колебания системы виброизоляции при пассивной виброизоляции Пассивная виброизоляция.
- •8 Основные виды воздействующих факторов на рэа . Механичекие воздействия их основные виды и применения.
- •9.11. Энергетические соотношения в системе виброизоляцииции. Уравнение Лагранжа
- •10. Характеристики виброизоляторов, используемых при расчёте системы на ударные воздействия и их применение
- •12. Статический и динамический расчет Статический расчет системы
- •Динамический расчет
- •14 Определение инерционных параметров.
- •15 Неравенство Релея
- •16 Определение собственных частот системы виброизоляции через парциальные частоты
- •17 Электрическое моделирование системы виброизоляции
- •18. Статический расчет системы. Определение координат центра тяжести объекта.
- •19 Частотная зависимость коэффициента динамичности системы виброизоляции.
- •20 Основные этапы инженерной методики вибрационного расчета системы виброизоляции блока рэс.
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •21 Жесткостные параметры системы виброизоляции. Статическая и динамическая жесткость системы виброизоляции
- •Методика расчета системы амортизации при вибрационных воздействиях
- •1. Статический расчет системы.
- •Динамический расчет системы амортизации.
- •Статический расчет системы
- •Установка амортизаторов, выбор типоразмера амортизатора
- •Выбор типоразмера амортизатора.
- •Выравнивание блока в положение равновесия
- •Для трех амортизаторов
- •Динамический расчет
- •22 Жесткостные и инерционные параметры систем виброизоляции
- •Свободное движение объекта вязким трением с одной степенью свободы.
- •25. Свободное движение блока на виброизоляторах, использующих силы сухого трения.
- •26. Колебания блока рэс с шестью степенями свободы. Особенности определения собственных частот системы виброизоляции.
- •27. Рекомендации по проектированию системы виброизоляции
- •28. Виды и классификация сил в системе виброизоляции
- •Основные виды диссипативных сил
- •Возмущающие силы
- •29. Определение собственных частот системы виброизоляции при трех, двух и одной плоскости симметрии
- •Система с 2-мя плоскостями симметрии
- •Система с одной плоскость симметрии
- •30. Парциальные частоты системы и их определение через параметры системы
- •32. Методики расчёта на ударные воздействия (упрощённая и метод эквивалентных прямоугольных импульсов).
- •31. Основные виды виброизоляторов и их характеристики.Нормализованные и ненормализованные виброизоляторы
- •1. Амортизатор демпфированный (ад).
- •4. Плоскостные или чашечные амортизаторы ап (ач)
- •33. Метод эквивалентных прямоугольных импульсов при расчёте системы виброизоляции на ударные воздействия
- •Методика расчета.
- •34. Свободное движение блока на виброизоляторах
- •Свободное движение объекта с одной степенью свободы в системе с вязким трением:
- •Малое затухание системы
- •35. Коэффициент динамичности. Его роль при расчёте системы виброизоляции. Эффективность виброизоляции
- •36 (Вместе с 35). Частотная зависимость коэффициента динамичности
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •Эффективность амортизации.
- •Тепло- и массобмен в эвс. Защита эвс от тепловых воздействий.
- •1 Пути обеспечения температурной стабильности и теплостойкости эвс.
- •Тепло.Вопрос№2 Конструктивные способы уменьшения теплового контактного сопротивления
- •3, Дифференциальное уравнение теплопроводности.
- •Тепло.Вопрос№4 Сравнение штыревых и ребристых радиаторов.
- •5. Метод электротепловой аналогии.
- •Аналогии.
- •Выражение для rtc.
- •Неустановившийся режим для плоской стенки.
- •Тепло.Вопрос№6 охлаждение транзисторов.
- •7. Передача тепла конвекцией.
- •Виды и режимы движения хладогентов.
- •Тепло.Вопрос№8 (Возможно это не то что надо ,но это всё что хоть как то связано с этим вопросом )
- •9. Уравнение энергии (Бернулли).
- •10. Критерий Рейнольдса.
- •11. Гидравлические характеристики рэс и нагнетателя.
- •Принцип суперпозиции.
- •Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •12 Повышение эффективности теплообмена путем оребрения поверхности.
- •13. Понятие о теории подобия и критериях подобия.
- •14. Естественная конвекция.
- •15. Передача тепла излучением.
- •16 Сложный теплообмен. Закон ньютона-римана.
- •17. Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •18 Уравнение теплопродности стационарный и не стационарный тепловые режимы
- •19 Передача тепла теплопроводностью. Температурный градиент. Закон Фурье.
- •20 Уравнение теплопроводности. Коэффициент температуропроводности. Дифференциальное уравнение теплопроводности
- •21 Одномерное установившееся поле плоской стенки, составных тел. Одномерное установившееся поле плоской стенки.
- •Одномерное установившееся поле составных тел. Трехслойная стенка.
- •22 Теплопередача при изменении агрегатного состояния вещества.
- •23 Эффективное излучение поверхности.
- •24 Сложный теплообмен.
- •25 (Возможно не верно) Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •26 Системы охлаждения рэа.
- •27 Эффект Пельтье
- •28 Тепловые трубы.
- •29. Системы воздушного охлаждения.
- •2.Kopпyс с перфорацией.
- •30. Рекомендации по конструированию систем охлаждения.
- •Pэa о общей принудительной вентиляцией.
- •2. Рэа с принудительной внутренней циркуляцией воздуха.
- •Жидкостное охлаждение.
- •31. Основные характеристики и принципы построения систем принудительного типа для охлаждения рэс. Виды и основные характеристики теплообменников
- •32. Гидравлические характеристики аппарата и нагнетателя. Выбор нагнетателя Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •Принцип суперпозиции.
Тепло.Вопрос№6 охлаждение транзисторов.
Необходимо по проведённому расчёту определить заготовку.
Рассмотрим установившийся режим. Важнейшим условием безотказной работы полупроводниковых приборов является применение эффективного теплоотвода, гарантирующего сохранение температуры p-n переходов в допустимых пределах. Применение радиаторов даже в случае, когда мощный транзистор используется с малым коэффициентом нагрузки, увеличивает долговечность его работы.
- задача.
Эквивалентная схема.
Определяем перегрев радиатора
Находим термическое сопротивление радиатора.
Определяем проводимость заготовки радиатора.
Далее пользуемся тепловыми характеристиками промышленных заготовок радиаторов.
- тепловая
характеристика для случая естественной
конвекции.
- тепловая
характеристика для случая вынужденной
конвекции.
- случай естественной
конвекции
-
случай вынужденной конвекции.
Для обеспечения
электрической изоляции от шасси
необходимо ввести изоляционные
прокладки, повышающие значение
термического сопротивления
и это необходимо учитывать.
Особенности установки нескольких полупроводниковых приборов на одном радиаторе.
1. Выявление наиболее слабого в тепловом отношения транзистора; находим перегревы всех транзисторов.
Выбираем
Определение термического сопротивления всего радиатора.
При определении заготовки необходимо учесть суммарную поправку на вынутые ребра.
7. Передача тепла конвекцией.
Она неразрывно связана о переносом среды, в которой происходит теплообмен (среда - газ либо жидкость). Перенос среды зависит от природы возникающего движения и его режима, свойств жидкости, геометрических размеров поверхности, с которой происходит теплообмен.
Виды и режимы движения хладогентов.
По природе возникновения различают два рода движения:
Свободное (естественная конвекция) - происходит за счёт разности плотностей нагретых и холодных частей среды, отсутствует при невесомости. Возникновение и интенсивность естественной конвекции определяется тепловыми условиями, родом жидкости, разностью температур, объёмом пространства, в котором происходят процесс.
Вынужденная конвекция - возникает под действием посторонних механических нагнетателей (возбудителей) (вентиляторы, насосы). Условие движения зависит от рода жидкости, температуры, скорости движения, геометрии канала.
Возможен смешанный режим, то есть, наряду с вынужденной может существовать и естественная конвекция. Чем меньше скорость вынужденного движения, тем больше относительное влияние свободного и при больших скоростях движения среды влияние свободного движения пренебрежительно мало.
Режимы движения жидкостей (газа).
Ламинарный - частицы среды движутся параллельно стенкам канала, отсутствуют составляющие, перпендикулярные направлению потока, закон распределения скоростей имеет вид параболы. Между отдельными слоями возникает сила сдвига, пропорциональная скорости (градиенту скорости) в направлении, перпендикулярном направлению движения среды - вязкостное течение жидкости.
- коэффициент
вязкости.
- закон распределения скоростей - парабола.
Т
урбулентный - частицы среды движутся неупорядоченно .хаотически, существует скорость перемещения в поперечном сечении канала, приводящая к вихревому движению .которое способствует интенсивному теплообмену. Характерно выравнивание скоростей за счёт вихревого движения. Это происходит в ядре потока. Закон распространения - усечённая парабола. У стенок существует пограничный слой ламинарного движения.
- термическое
сопротивление пограничного слоя больше
термического сопротивления ядра. Так
как центре происходит интенсивное
перемешивание частиц среды, то теплообмен
идёт за счёт конвекции .В теплообмен
идёт за счёт теплопроводности.
Возможен также режим движения жидкости переходный между ними:
Он является неустойчивым, средним между ламинарным к турбулентным движениями.
Если
,то
имеем турбулентный режим движения
жидкости.