
- •1 Внешние воздействующие факторы. Классификация.
- •Механические и внешние воздействующие факторы:
- •Климатические ввф.
- •2 Внешние воздействующие факторы космической среды.
- •4. Особенности проекторования системы виброизоляции при однонаправленной схеме нагружения
- •5. Конструктивные особенности системы виброизоляции
- •Система с 2-мя плоскостями симметрии.
- •Система с одной плоскость симметрии.
- •Система без плоскостей симметрии
- •6.Виды диссипативных сил, действующих в системе виброизоляции. Их разновидности и реализация в виброизоляторе. Основные виды диссипативных сил.
- •7.Вынужденные колебания системы виброизоляции при пассивной виброизоляции Пассивная виброизоляция.
- •8 Основные виды воздействующих факторов на рэа . Механичекие воздействия их основные виды и применения.
- •9.11. Энергетические соотношения в системе виброизоляцииции. Уравнение Лагранжа
- •10. Характеристики виброизоляторов, используемых при расчёте системы на ударные воздействия и их применение
- •12. Статический и динамический расчет Статический расчет системы
- •Динамический расчет
- •14 Определение инерционных параметров.
- •15 Неравенство Релея
- •16 Определение собственных частот системы виброизоляции через парциальные частоты
- •17 Электрическое моделирование системы виброизоляции
- •18. Статический расчет системы. Определение координат центра тяжести объекта.
- •19 Частотная зависимость коэффициента динамичности системы виброизоляции.
- •20 Основные этапы инженерной методики вибрационного расчета системы виброизоляции блока рэс.
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •21 Жесткостные параметры системы виброизоляции. Статическая и динамическая жесткость системы виброизоляции
- •Методика расчета системы амортизации при вибрационных воздействиях
- •1. Статический расчет системы.
- •Динамический расчет системы амортизации.
- •Статический расчет системы
- •Установка амортизаторов, выбор типоразмера амортизатора
- •Выбор типоразмера амортизатора.
- •Выравнивание блока в положение равновесия
- •Для трех амортизаторов
- •Динамический расчет
- •22 Жесткостные и инерционные параметры систем виброизоляции
- •Свободное движение объекта вязким трением с одной степенью свободы.
- •25. Свободное движение блока на виброизоляторах, использующих силы сухого трения.
- •26. Колебания блока рэс с шестью степенями свободы. Особенности определения собственных частот системы виброизоляции.
- •27. Рекомендации по проектированию системы виброизоляции
- •28. Виды и классификация сил в системе виброизоляции
- •Основные виды диссипативных сил
- •Возмущающие силы
- •29. Определение собственных частот системы виброизоляции при трех, двух и одной плоскости симметрии
- •Система с 2-мя плоскостями симметрии
- •Система с одной плоскость симметрии
- •30. Парциальные частоты системы и их определение через параметры системы
- •32. Методики расчёта на ударные воздействия (упрощённая и метод эквивалентных прямоугольных импульсов).
- •31. Основные виды виброизоляторов и их характеристики.Нормализованные и ненормализованные виброизоляторы
- •1. Амортизатор демпфированный (ад).
- •4. Плоскостные или чашечные амортизаторы ап (ач)
- •33. Метод эквивалентных прямоугольных импульсов при расчёте системы виброизоляции на ударные воздействия
- •Методика расчета.
- •34. Свободное движение блока на виброизоляторах
- •Свободное движение объекта с одной степенью свободы в системе с вязким трением:
- •Малое затухание системы
- •35. Коэффициент динамичности. Его роль при расчёте системы виброизоляции. Эффективность виброизоляции
- •36 (Вместе с 35). Частотная зависимость коэффициента динамичности
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •Эффективность амортизации.
- •Тепло- и массобмен в эвс. Защита эвс от тепловых воздействий.
- •1 Пути обеспечения температурной стабильности и теплостойкости эвс.
- •Тепло.Вопрос№2 Конструктивные способы уменьшения теплового контактного сопротивления
- •3, Дифференциальное уравнение теплопроводности.
- •Тепло.Вопрос№4 Сравнение штыревых и ребристых радиаторов.
- •5. Метод электротепловой аналогии.
- •Аналогии.
- •Выражение для rtc.
- •Неустановившийся режим для плоской стенки.
- •Тепло.Вопрос№6 охлаждение транзисторов.
- •7. Передача тепла конвекцией.
- •Виды и режимы движения хладогентов.
- •Тепло.Вопрос№8 (Возможно это не то что надо ,но это всё что хоть как то связано с этим вопросом )
- •9. Уравнение энергии (Бернулли).
- •10. Критерий Рейнольдса.
- •11. Гидравлические характеристики рэс и нагнетателя.
- •Принцип суперпозиции.
- •Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •12 Повышение эффективности теплообмена путем оребрения поверхности.
- •13. Понятие о теории подобия и критериях подобия.
- •14. Естественная конвекция.
- •15. Передача тепла излучением.
- •16 Сложный теплообмен. Закон ньютона-римана.
- •17. Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •18 Уравнение теплопродности стационарный и не стационарный тепловые режимы
- •19 Передача тепла теплопроводностью. Температурный градиент. Закон Фурье.
- •20 Уравнение теплопроводности. Коэффициент температуропроводности. Дифференциальное уравнение теплопроводности
- •21 Одномерное установившееся поле плоской стенки, составных тел. Одномерное установившееся поле плоской стенки.
- •Одномерное установившееся поле составных тел. Трехслойная стенка.
- •22 Теплопередача при изменении агрегатного состояния вещества.
- •23 Эффективное излучение поверхности.
- •24 Сложный теплообмен.
- •25 (Возможно не верно) Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •26 Системы охлаждения рэа.
- •27 Эффект Пельтье
- •28 Тепловые трубы.
- •29. Системы воздушного охлаждения.
- •2.Kopпyс с перфорацией.
- •30. Рекомендации по конструированию систем охлаждения.
- •Pэa о общей принудительной вентиляцией.
- •2. Рэа с принудительной внутренней циркуляцией воздуха.
- •Жидкостное охлаждение.
- •31. Основные характеристики и принципы построения систем принудительного типа для охлаждения рэс. Виды и основные характеристики теплообменников
- •32. Гидравлические характеристики аппарата и нагнетателя. Выбор нагнетателя Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •Принцип суперпозиции.
34. Свободное движение блока на виброизоляторах
(понабрал из 23, 25, 26, 9, поэтому МНОГО, не знаю, о чём именно надо рассказывать)
Уравнение Лагранжа (уравнение движения объекта).
I II III
L=T-П - функция Лагранжа, Т - кинетическая энергия системы, П - потенциальная, Ф - диссипативные силы вроде, q - обобщенные скорости по соответствующим координатам
i – число обобщенных координат, равное числу степеней свободы.
I - баланс кинетической и потенциальной энергии в системе.
II - потери энергии на диссипацию.
III - приток энергии за счет возмущающих сил.
В частных случаях Q(t) равно нулю:
при свободном движении объекта (смещение блока от положения равновесия)
кинематическое возмущение
Данное уравнение позволяет проанализировать движение системы с любой степенью свободы и в любой момент времени. Для системы c S степенями свободы уравнение Лагранжа превращается в систему из S дифференциальных уравнений. При S=6 уравнение Лагранжа – система из 6-ти уравнений.
Решение в общем виде подобной системы – сложная задача даже при использовании ЭВМ.
S = 1 - система решается, S > 1 – применяются упрощенные методы расчета системы.
Свободное движение объекта с одной степенью свободы в системе с вязким трением:
S=1, |
,
|
Подставив эти выражения в уравнение Лагранжа получим: |
|
, |
- уравнение
- частота собственных колебаний системы
- коэффициент затухания
с - жесткостной параметр системы
а - инерционный параметр системы
Существуют два случая:
Малое затухание системы
|
q0 – начальное смещение - угол отсечки |
Т.к. обычно на практике логарифмический декремент Колебаний:
Замечания:
наиболее типичен для реальных амортизаторов.
Затухание практически не искажает значение собственной частоты.
Затухание свободных колебаний происходит по экспоненте и амплитуда колебаний стремится к 0. Считают, что амплитуда колебаний равна 0 через 10…15 периодов собственных колебаний.
Значительные потери . Характер движения апериодический. В системах амортизации практически не встречается.
|
Конкретный характер движения зависит от начальных условий. 1. 2.
|
Рассмотренные случаи соответствуют установке амортизаторов с вязким трением или гистерезисными потерями, для которых справедлива функция:
Свободное движение объекта на амортизаторах с сухим трением.
|
|
Решение выглядит следующим образом:
1. |
|
2. |
|
Основные особенности движения систем на амортизаторах с сухим трением.
Частота собственных колебаний определяется по формуле и не зависит от величины диссипативных сил.
Собственные колебания затухающие и затухают по линейному закону.
Существует зона застоя для амортизаторов с сухим трением: собственные колебания затухают до нуля. В зоне застоя объект не доходит до положения равновесия расстояние равное , т.е. существует некоторая амплитуда смещения блока относительно положения равновесия.
Остановка блока в зоне застоя происходит в момент времени t1, для которого и (при );
Наличие зоны застоя объясняется малой величиной потенциальной энергии, которая не может преодолеть силы сухого трения амортизаторов; кинетическая энергия равна нулю. Говорят, что амортизатор для зоны застоя закрыт. Амортизаторы с сухим трением не работают при амплитудах смещения .