
- •1 Внешние воздействующие факторы. Классификация.
- •Механические и внешние воздействующие факторы:
- •Климатические ввф.
- •2 Внешние воздействующие факторы космической среды.
- •4. Особенности проекторования системы виброизоляции при однонаправленной схеме нагружения
- •5. Конструктивные особенности системы виброизоляции
- •Система с 2-мя плоскостями симметрии.
- •Система с одной плоскость симметрии.
- •Система без плоскостей симметрии
- •6.Виды диссипативных сил, действующих в системе виброизоляции. Их разновидности и реализация в виброизоляторе. Основные виды диссипативных сил.
- •7.Вынужденные колебания системы виброизоляции при пассивной виброизоляции Пассивная виброизоляция.
- •8 Основные виды воздействующих факторов на рэа . Механичекие воздействия их основные виды и применения.
- •9.11. Энергетические соотношения в системе виброизоляцииции. Уравнение Лагранжа
- •10. Характеристики виброизоляторов, используемых при расчёте системы на ударные воздействия и их применение
- •12. Статический и динамический расчет Статический расчет системы
- •Динамический расчет
- •14 Определение инерционных параметров.
- •15 Неравенство Релея
- •16 Определение собственных частот системы виброизоляции через парциальные частоты
- •17 Электрическое моделирование системы виброизоляции
- •18. Статический расчет системы. Определение координат центра тяжести объекта.
- •19 Частотная зависимость коэффициента динамичности системы виброизоляции.
- •20 Основные этапы инженерной методики вибрационного расчета системы виброизоляции блока рэс.
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •21 Жесткостные параметры системы виброизоляции. Статическая и динамическая жесткость системы виброизоляции
- •Методика расчета системы амортизации при вибрационных воздействиях
- •1. Статический расчет системы.
- •Динамический расчет системы амортизации.
- •Статический расчет системы
- •Установка амортизаторов, выбор типоразмера амортизатора
- •Выбор типоразмера амортизатора.
- •Выравнивание блока в положение равновесия
- •Для трех амортизаторов
- •Динамический расчет
- •22 Жесткостные и инерционные параметры систем виброизоляции
- •Свободное движение объекта вязким трением с одной степенью свободы.
- •25. Свободное движение блока на виброизоляторах, использующих силы сухого трения.
- •26. Колебания блока рэс с шестью степенями свободы. Особенности определения собственных частот системы виброизоляции.
- •27. Рекомендации по проектированию системы виброизоляции
- •28. Виды и классификация сил в системе виброизоляции
- •Основные виды диссипативных сил
- •Возмущающие силы
- •29. Определение собственных частот системы виброизоляции при трех, двух и одной плоскости симметрии
- •Система с 2-мя плоскостями симметрии
- •Система с одной плоскость симметрии
- •30. Парциальные частоты системы и их определение через параметры системы
- •32. Методики расчёта на ударные воздействия (упрощённая и метод эквивалентных прямоугольных импульсов).
- •31. Основные виды виброизоляторов и их характеристики.Нормализованные и ненормализованные виброизоляторы
- •1. Амортизатор демпфированный (ад).
- •4. Плоскостные или чашечные амортизаторы ап (ач)
- •33. Метод эквивалентных прямоугольных импульсов при расчёте системы виброизоляции на ударные воздействия
- •Методика расчета.
- •34. Свободное движение блока на виброизоляторах
- •Свободное движение объекта с одной степенью свободы в системе с вязким трением:
- •Малое затухание системы
- •35. Коэффициент динамичности. Его роль при расчёте системы виброизоляции. Эффективность виброизоляции
- •36 (Вместе с 35). Частотная зависимость коэффициента динамичности
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •Эффективность амортизации.
- •Тепло- и массобмен в эвс. Защита эвс от тепловых воздействий.
- •1 Пути обеспечения температурной стабильности и теплостойкости эвс.
- •Тепло.Вопрос№2 Конструктивные способы уменьшения теплового контактного сопротивления
- •3, Дифференциальное уравнение теплопроводности.
- •Тепло.Вопрос№4 Сравнение штыревых и ребристых радиаторов.
- •5. Метод электротепловой аналогии.
- •Аналогии.
- •Выражение для rtc.
- •Неустановившийся режим для плоской стенки.
- •Тепло.Вопрос№6 охлаждение транзисторов.
- •7. Передача тепла конвекцией.
- •Виды и режимы движения хладогентов.
- •Тепло.Вопрос№8 (Возможно это не то что надо ,но это всё что хоть как то связано с этим вопросом )
- •9. Уравнение энергии (Бернулли).
- •10. Критерий Рейнольдса.
- •11. Гидравлические характеристики рэс и нагнетателя.
- •Принцип суперпозиции.
- •Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •12 Повышение эффективности теплообмена путем оребрения поверхности.
- •13. Понятие о теории подобия и критериях подобия.
- •14. Естественная конвекция.
- •15. Передача тепла излучением.
- •16 Сложный теплообмен. Закон ньютона-римана.
- •17. Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •18 Уравнение теплопродности стационарный и не стационарный тепловые режимы
- •19 Передача тепла теплопроводностью. Температурный градиент. Закон Фурье.
- •20 Уравнение теплопроводности. Коэффициент температуропроводности. Дифференциальное уравнение теплопроводности
- •21 Одномерное установившееся поле плоской стенки, составных тел. Одномерное установившееся поле плоской стенки.
- •Одномерное установившееся поле составных тел. Трехслойная стенка.
- •22 Теплопередача при изменении агрегатного состояния вещества.
- •23 Эффективное излучение поверхности.
- •24 Сложный теплообмен.
- •25 (Возможно не верно) Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •26 Системы охлаждения рэа.
- •27 Эффект Пельтье
- •28 Тепловые трубы.
- •29. Системы воздушного охлаждения.
- •2.Kopпyс с перфорацией.
- •30. Рекомендации по конструированию систем охлаждения.
- •Pэa о общей принудительной вентиляцией.
- •2. Рэа с принудительной внутренней циркуляцией воздуха.
- •Жидкостное охлаждение.
- •31. Основные характеристики и принципы построения систем принудительного типа для охлаждения рэс. Виды и основные характеристики теплообменников
- •32. Гидравлические характеристики аппарата и нагнетателя. Выбор нагнетателя Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •Принцип суперпозиции.
31. Основные виды виброизоляторов и их характеристики.Нормализованные и ненормализованные виброизоляторы
Амортизатор
(виброизолятор) — устройство,
превращающее механическую энергию в
тепловую. Служит для гашения колебаний
(демпфирования) и поглощения толчков
и ударов, действующих на корпус (раму).
1. Амортизатор демпфированный (ад).
1 - подвижный шток, крепится к объекту;
2 - корпус амортизатора жёстко соединённый с основанием амортизатора 6 и крепится к раме;
3 - резиновый баллон с калиброванным отверстием 5;
При вибрационных нагрузках баллон деформируется и через калиброванное отверстие проходит воздух внутрь и в баллон, следовательно происходит рассеивание энергии, т.о. осуществляется демпфирование.
4 - металлическая пружина - упругий элемент, определяющий статическую и динамическую жёсткость амортизатора.
Демпфированные амортизаторы типа АД применяют когда требуется установка приборов таким образом, чтобы в некотором диапазоне нагрузок соблюдалась равночастотность. Они могут работать в диапазоне температур -60°С ... +70°С.
Их устанавливают на приборах, работающих в широком диапазоне вибрации. Они хорошо гасят свободные колебания с ускорением до 4 g, снижают ударные ускорения примерно в 2,8 раза, а также удовлетворительно работают в условиях пониженного давления (ниже 40 мм рт. ст.) и при перепаде внешней температуры от -60°С ... +70°С.
Данный
вид амортизатора реализует диссипативную
силу типа: вязкое трение.
,
W
- основное направление,
- 8, рабочие температуры
Необходимо: перечислить и недостатки этого амортизатора:
наличие резиновой детали - старение, боится солнечной радиации.
невозможность эксплуатации при большой разреженности атмосферы (непригоден для самолётов, ракет, высокогорий...).
2. АФД - амортизатор фрикционного демпфирования.
1 - шток, который крепится к блоку;
2 - корпус, соединённый с основанием амортизатора 5;
3 - фрикционная шайба;
4 - пружины (верхняя и нижняя).
Фрикционные (механические) — это амортизаторы с сопротивлением пропорциональным перемещению. Главной особенностью фрикционных амортизаторов является то, что их сопротивление не зависит от скорости перемещения катка. Поэтому они в прямом смысле слова являются демпферами, так как выполняют только одну из указанных в определении амортизатора функций — гашение колебаний.
Упругие свойства определяются характеристиками пружин 4 (металлических).
Параметры:
W
- основное направление (это ограничивает
варианты установки),
рабочий
диапазон температур -60°C
... +150°С.
Этот амортизатор лишён недостатков амортизаторов 1-го типа.
3
.
АПН - амортизатор пространственного
нагружения (это модификация АФД).
Дополнительные диссипативные силы образуются за счёт трения шайбы о сухари, следовательно, возможны нагрузки не только в направлении W.
4. Плоскостные или чашечные амортизаторы ап (ач)
АП и АЧ, предназначены для виброизоляции и защиты от ударных воздействий оборудования при низких температурах порядка 45-55 и высоких порядка 80, изготовленных из резин.
Резиновая шайба определяет упругие силы и упругие свойства амортизатора.
Здесь
диссипативные силы имеют вид:
гистерезисные потери. Основные параметры
этого амортизатора совпадают с
параметрами амортизаторов типа АД,
кроме требований разрежения.
32. Методика расчёта системы виброизоляции блока при ударном воздействии упрощённым методом
Здесь удар трактуется мгновенным. При этом принимают потенциальную энергию, определяемую деформацией равной нулю. . Следовательно, вся кинетическая энергия, запасённая за время удара, полностью переходит в потенциальную энергию максимально сжатых амортизаторов.
m – известна;
При заданной форме ударного импульса параметры системы и определяются следующим образом (при ):
Для типовых форм ударных импульсов формул для расчета и приводятся в соответствующих таблицах.
Методика определения ускорения объекта сводится к следующим действиям:
По ударной характеристике энергоёмкости системы (определяем максимальную деформацию амортизаторов:
По максимальной деформации, с помощью силовой ударной характеристики, определяем максимальную ударную силу: .
По максимальной ударной силе определяем ускорение объекта по формуле:
По ударной характеристике энергоёмкости системы (определяем максимальную деформацию амортизаторов:
По максимальной деформации, с помощью силовой ударной характеристики, определяем максимальную ударную силу: .
По максимальной ударной силе определяем ускорение объекта по формуле:
Этот алгоритм действителен и для метода эквивалентных прямоугольных импульсов.
Оценим погрешность этого расчёта:
знаменатель известен, числитель определяется то графику энергоемкости, т.к. значение известно.