
- •1 Внешние воздействующие факторы. Классификация.
- •Механические и внешние воздействующие факторы:
- •Климатические ввф.
- •2 Внешние воздействующие факторы космической среды.
- •4. Особенности проекторования системы виброизоляции при однонаправленной схеме нагружения
- •5. Конструктивные особенности системы виброизоляции
- •Система с 2-мя плоскостями симметрии.
- •Система с одной плоскость симметрии.
- •Система без плоскостей симметрии
- •6.Виды диссипативных сил, действующих в системе виброизоляции. Их разновидности и реализация в виброизоляторе. Основные виды диссипативных сил.
- •7.Вынужденные колебания системы виброизоляции при пассивной виброизоляции Пассивная виброизоляция.
- •8 Основные виды воздействующих факторов на рэа . Механичекие воздействия их основные виды и применения.
- •9.11. Энергетические соотношения в системе виброизоляцииции. Уравнение Лагранжа
- •10. Характеристики виброизоляторов, используемых при расчёте системы на ударные воздействия и их применение
- •12. Статический и динамический расчет Статический расчет системы
- •Динамический расчет
- •14 Определение инерционных параметров.
- •15 Неравенство Релея
- •16 Определение собственных частот системы виброизоляции через парциальные частоты
- •17 Электрическое моделирование системы виброизоляции
- •18. Статический расчет системы. Определение координат центра тяжести объекта.
- •19 Частотная зависимость коэффициента динамичности системы виброизоляции.
- •20 Основные этапы инженерной методики вибрационного расчета системы виброизоляции блока рэс.
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •21 Жесткостные параметры системы виброизоляции. Статическая и динамическая жесткость системы виброизоляции
- •Методика расчета системы амортизации при вибрационных воздействиях
- •1. Статический расчет системы.
- •Динамический расчет системы амортизации.
- •Статический расчет системы
- •Установка амортизаторов, выбор типоразмера амортизатора
- •Выбор типоразмера амортизатора.
- •Выравнивание блока в положение равновесия
- •Для трех амортизаторов
- •Динамический расчет
- •22 Жесткостные и инерционные параметры систем виброизоляции
- •Свободное движение объекта вязким трением с одной степенью свободы.
- •25. Свободное движение блока на виброизоляторах, использующих силы сухого трения.
- •26. Колебания блока рэс с шестью степенями свободы. Особенности определения собственных частот системы виброизоляции.
- •27. Рекомендации по проектированию системы виброизоляции
- •28. Виды и классификация сил в системе виброизоляции
- •Основные виды диссипативных сил
- •Возмущающие силы
- •29. Определение собственных частот системы виброизоляции при трех, двух и одной плоскости симметрии
- •Система с 2-мя плоскостями симметрии
- •Система с одной плоскость симметрии
- •30. Парциальные частоты системы и их определение через параметры системы
- •32. Методики расчёта на ударные воздействия (упрощённая и метод эквивалентных прямоугольных импульсов).
- •31. Основные виды виброизоляторов и их характеристики.Нормализованные и ненормализованные виброизоляторы
- •1. Амортизатор демпфированный (ад).
- •4. Плоскостные или чашечные амортизаторы ап (ач)
- •33. Метод эквивалентных прямоугольных импульсов при расчёте системы виброизоляции на ударные воздействия
- •Методика расчета.
- •34. Свободное движение блока на виброизоляторах
- •Свободное движение объекта с одной степенью свободы в системе с вязким трением:
- •Малое затухание системы
- •35. Коэффициент динамичности. Его роль при расчёте системы виброизоляции. Эффективность виброизоляции
- •36 (Вместе с 35). Частотная зависимость коэффициента динамичности
- •Определение коэффициента динамичности при наличии диапазонов собственных и воздействующих частот
- •Эффективность амортизации.
- •Тепло- и массобмен в эвс. Защита эвс от тепловых воздействий.
- •1 Пути обеспечения температурной стабильности и теплостойкости эвс.
- •Тепло.Вопрос№2 Конструктивные способы уменьшения теплового контактного сопротивления
- •3, Дифференциальное уравнение теплопроводности.
- •Тепло.Вопрос№4 Сравнение штыревых и ребристых радиаторов.
- •5. Метод электротепловой аналогии.
- •Аналогии.
- •Выражение для rtc.
- •Неустановившийся режим для плоской стенки.
- •Тепло.Вопрос№6 охлаждение транзисторов.
- •7. Передача тепла конвекцией.
- •Виды и режимы движения хладогентов.
- •Тепло.Вопрос№8 (Возможно это не то что надо ,но это всё что хоть как то связано с этим вопросом )
- •9. Уравнение энергии (Бернулли).
- •10. Критерий Рейнольдса.
- •11. Гидравлические характеристики рэс и нагнетателя.
- •Принцип суперпозиции.
- •Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •12 Повышение эффективности теплообмена путем оребрения поверхности.
- •13. Понятие о теории подобия и критериях подобия.
- •14. Естественная конвекция.
- •15. Передача тепла излучением.
- •16 Сложный теплообмен. Закон ньютона-римана.
- •17. Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •18 Уравнение теплопродности стационарный и не стационарный тепловые режимы
- •19 Передача тепла теплопроводностью. Температурный градиент. Закон Фурье.
- •20 Уравнение теплопроводности. Коэффициент температуропроводности. Дифференциальное уравнение теплопроводности
- •21 Одномерное установившееся поле плоской стенки, составных тел. Одномерное установившееся поле плоской стенки.
- •Одномерное установившееся поле составных тел. Трехслойная стенка.
- •22 Теплопередача при изменении агрегатного состояния вещества.
- •23 Эффективное излучение поверхности.
- •24 Сложный теплообмен.
- •25 (Возможно не верно) Простейшая методика подбора теплоотвода для охлаждения полупроводниковых приборов (ост 4 го.010.030):
- •26 Системы охлаждения рэа.
- •27 Эффект Пельтье
- •28 Тепловые трубы.
- •29. Системы воздушного охлаждения.
- •2.Kopпyс с перфорацией.
- •30. Рекомендации по конструированию систем охлаждения.
- •Pэa о общей принудительной вентиляцией.
- •2. Рэа с принудительной внутренней циркуляцией воздуха.
- •Жидкостное охлаждение.
- •31. Основные характеристики и принципы построения систем принудительного типа для охлаждения рэс. Виды и основные характеристики теплообменников
- •32. Гидравлические характеристики аппарата и нагнетателя. Выбор нагнетателя Характеристики нагнетателя.
- •Определение рабочей точки и выбор нагнетателя.
- •Принцип суперпозиции.
Установка амортизаторов, выбор типоразмера амортизатора
Амортизаторы ставятся под основанием. Координаты установки выбираются так, чтобы проекция центра тяжести блока находилась внутри треугольника, вершиной которого является проекция на основание точек крепления амортизаторов.
Верно |
Неверно |
|
|
Выбор типоразмера амортизатора.
Амортизаторы классифицируются по типам и внутри каждого типа по типоразмерам. Конкретный тип амортизатора выбирается исходя из условий эксплуатации устройства. Конкретный типоразмер выбирается по статической нагрузке на амортизатор. В справочных данных приводятся либо номинальные нагрузки на амортизатор, либо диапазон нагрузок. В этом случае, если задано:
Pном, то Pmin = 0,7Pном; Pmax = 1,3Pном
Выбор типоразмера амортизатора проводится на основании следующего неравенства: Pmin < Pi < Pmax, т.е. расчетная реакция должна лежать в диапазоне Pmin … Pmax.
Выравнивание блока в положение равновесия
|
|
Используя условия выбора амортизатора, получаем: P1 – типоразмер №1, P2 – типоразмер №2.
|
Для
каждого амортизатора существует
статическая характеристика. Реакция
P1
возникает при деформации W1,
P2
– при W2,
следовательно блок установлен с
перекосом. Для устранения этого
перекоса необходимо поставить
прокладку толщиной
|
Для трех амортизаторов
|
Если реакции лежат в одном диапазоне, то мы берем один и тот же тип амортизатора. Расчет ведем по минимальной деформации.
|
Если установлены разные амортизаторы, необходимо дополнительно учитывать при расчете толщины прокладки первоначальную разницу габаритных размеров и амортизаторов.
Динамический расчет
22 Жесткостные и инерционные параметры систем виброизоляции
Определение инерционных и жесткостных параметров системы.
Определение инерционных параметров.
mi масса – инерционный параметр системы при поступательном движении;
Ixx, Iyy, Izz – моменты инерции при поворотном движении;
m – определяется суммирование масс различных частей, узлов, деталей блока.
Iii – собственный момент инерции всего блока относительного его центральных осей. Они определяются следующим образом:
– сумма собственных моментов инерции элементарных блоков относительно центров координатных осей этих блоков. Учитывая, что блоки простейших форм, их моменты инерции рассчитываются по таблицам.
– дополнительные моменты инерции, создаваемые блоком относительно координатных осей X, Y или Z .
1.2 Жесткостные параметры системы.
Cg – суммарная жесткость системы (динамическая).
Представляется в виде суммы динамических жесткостей системы или поворотных жесткостей.
Динамические жесткости амортизаторов определяются по графикам динамической жесткости.
Эти графики сняты экспериментально. А – амплитуда вибрации основания.
Cgu – значение динамических жесткостей.
Характер зависимости – линейный. График дается для трех значений: Pmin, Pmax, Pmin. Зная график зависимости и амплитуду вибрации основания, можно говорить об определении значений динамических жесткостей амортизаторов. Если графика нет, то Cg = 1,1 … 1,2 C , где С – статическая жесткость, определяемая по графику статической жесткости.
Динамическая жесткость системы определяется только через динамические жесткости амортизаторов и не может быть изменена при выбранном типоразмере амортизатора. Поворотная жесткость определяется еще и координатами установки амортизатора и может быть изменена за счет изменения этих координат.
1.3 Определение парциальных частот.
Парциальные частоты определяются через инерционные и жесткостные параметры системы.
Определение собственных частот системы амортизации.
Собственные частоты системы амортизации определяются через парциальные частоты с учетом наличия плоскостей симметрии.
Расчет коэффициента динамичности.
- собственная частота;
- воздействующая частота;
m - масса блока;
kg - коэффициент демпфирования, который определяется по графику (график экспериментальный для различных нагрузок на амортизатор);
|
- в закрытой области. |
- сумма по всем амортизаторам по соответствующим индексам.
В зарезонансной зоне можно принять так:
В резонансной зоне – очень сильная зависимость.
Для уменьшения коэффициента динамичности в резонансной зоне необходимо увеличить Kg. Для этого в системе предусматривается максимальная связность перемещений, т.е. отсутствие плоскостей симметрии.
Определение ускорения объекта.
Ориентировочно оценку коэффициента динамичности можно вести по АЧХ амортизатора.
Замечание: jоб – ускорение центра тяжести объекта. В некоторых точках блока за счет поворотных движений ускорение может быть больше.
23 Свободное движение блока на виброизоляторах, использующих силы вязкого трения.