Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Правильніе ответы по АПК.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
5.5 Mб
Скачать

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология HyperThreading.

11) Приведіть схему й опишіть класифікацію напівпровідникових запам’ятовувальних пристроїв. Намалюйте загальний вид мікросхеми пам’яті 32Кх8 та приведіть її основні характеристики та діаграму роботи.

В цифровых системах используются внешние и внутренние запоминающие устройства (ЗУ). Внешние ЗУ реализуют на жестких магнитных (hard drive), интегрально-полупроводниковых (флэш-диски), оптических и магнитооптических дисках (CD, DVD). Внутренние ЗУ в основном – полупроводниковые – предназначены для хранения промежуточных данных и программ обработки данных. Внутренние ЗУ делятся на оперативные ЗУ и постоянные ЗУ.

Оперативные запоминающие устройства (ОЗУ) характеризуются возможностью быстрого ввода/вывода (записи/считывания) информации в виде двоичных чисел в свою любую отдельную ячейку. Поэтому синонимом ОЗУ является память с произвольной выборкой (RAM–Random Access Memory).

Постоянные запоминающие устройства (ПЗУ) в отличие от ОЗУ используются в основном для считывания записанной в них информации. Запись же осуществляется либо “раз и навсегда”, либо относительно редко. Этот класс ЗУ в зарубежной литературе называют ROM (Read–Only Memory – память только для считывания).

Существует также значительное количество ПЗУ с возможностью многократной записи в них информации – перепрограммируемые ПЗУ (ППЗУ).

Структура микросхем памяти

Полупроводниковые ОЗУ, ПЗУ состоят из двух основных частей: накопителя и схемы управления, или периферии. Накопитель – это основная часть ПЗУ, где хранятся данные (двоичные коды). Периферия предназначена для ввода и вывода этих данных. В нее входят дешифраторы, усилители, регистры, разного рода ключевые схемы, коммутаторы и другое.

Накопитель состоит из элементов памяти (ЭП), каждая из них хранит один бит информации. Основу ЭП составляют бистабильные ячейки, основным свойством которых является наличие двух устойчивых состояний – 0, 1.

На рис. 57 представлена типичная структура запоминающего устройства с матричной организацией.

Рис. 57. Структура микросхемы ОЗУ

На приведенной схеме используются следующие сокращения:

  • ДШх, ДШу – адресные дешифраторы строк и столбцов;

  • ФЗС – формирователь сигналов записи/считывания;

  • СУ – схема управления;

  • АШх, РШ – адресные и разрядные шины;

  • DI, DO – шины записи и считывания соответственно;

  • БК – буферный каскад.

Накопитель представляет собой прямоугольную матрицу ЭП, содержащую nx строк и ny столбцов. Емкость накопителя N = nx · ny. Каждый ЭП подключен к адресным (АШ) и разрядным (РШ) шинам. Выбор необходимого ЭП осуществляется путем подачи определенной комбинации адресных переменных (Am … A1 , A0). Адресные дешифраторы строк (ДШx) и столбцов (ДШy) формируют сигналы выборки на соответствующих АШ, которые определяют строку и столбец накопителя, в котором расположен выбираемый ЭП. Таким образом, m адресных входов позволяют выбирать один из N = 2m элементов памяти.

Режим работы микросхемы определяется сигналами выбора микросхемы   (CHIP SELECT) и записи-считывания   (WRITE/READ). При подаче низкого потенциала на вход выбора   схема управления (СУ) разрешает формирование сигналов выборки на АШx . Если при этом сигнал на входе  , то СУ формирует управляющий сигнал, при котором ФЗС обеспечивает запись в выбранном ЭП информации, поступающей на вход DI. Выход DO в этом случае находится в отключенном состоянии. Если сигнал  , то СУ переключает ФЗС в режим считывания, при котором информация из выбранного ЭП передается на выход DO, при этом состояние входа DI не влияет на работу микросхемы.

При   микросхема находится в режиме хранения, т. е. состояние ЭП не меняется при любых сигналах на входах (Am … A0), DI,  . Выход DO находится в отключенном состоянии.

Типовые временные диаграммы, иллюстрирующие работу микросхем памяти, приведены на рис. 58.

Рис. 58. Временные диаграммы работы микросхем памяти с произвольной выборкой