8. Алканы. Номенклатура
В природном газе и особенно в нефти содержится много углеводородов, сходных с метаном по строению и свойствам.
Для наименования всех предельных углеводородов принят суффикс – ан.
С увеличением молекулярной массы последовательно возрастают температуры плавления и кипения углеводородов.
Первые четыре вещества (С1 – С4) при обычных условиях – газы.
Все предельные углеводороды нерастворимы в воде, но могут растворяться в органических растворителях.
Общая формула углеводородов: СnH2n+2, где n – число атомов углерода в молекуле.
Способы получения:
Крекинг нефти (промышленный способ)
При крекинге алканы получаются вместе с непредельными соединениями (алкенами). Этот способ важен тем, что при разрыве молекул высших алканов получается очень ценное сырье для органического синтеза: пропан, бутан, изобутан, изопентан и др.
Гидpиpование непpедельных углеводоpодов:
Газификация твердого топлива (при повышенной температуре и давлении, катализатор Ni):
Из синтез-газа (СО + Н2) получают смесь алканов:
Синтез более сложных алканов из галогенопpоизводных с меньшим числом атомов углеpода:
(Реакция Вюpца)
Из солей карбоновых кислот: а) сплавление со щелочью (реакция Дюма)
б) электролиз по Кольбе
Разложение карбидов металлов (метанидов) водой:
Свойства: 1. Галогенирование. При взаимодействии алканов с галогенами (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов. Общая схема этой реакции показана на примере метана:
|
Сl2 |
|
Сl2 |
|
Сl2 |
|
Сl2 |
|
|
|
СН4 |
→ |
СН3Сl |
→ |
СН2Сl2 |
→ |
СНСl3 |
→ |
ССl4 |
|
(*) |
|
-HCl |
|
-HCl |
|
-НСl |
|
-HCl |
|
|
|
2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при 140°С и небольшом давлении протекает радикальная реакция:
|
t ° |
|
CH3-CH3 + HNO3 |
→ |
CH3-CH2-NO2 + H2O. |
При радикальных реакциях (галогенирование, нитрование) в первую очередь замешаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода. Это объясняется тем, что легче всего разрывается гомолитически связь третичного атома углерода с водородом (энергия связи 376 кДж/моль), затем — вторичного (390 кДж/моль) и только потом — первичного (415 кДж/моль).
3. Изомеризация. Нормальные алканы при определенных условиях могут превращаться в алканы с разветвленной цепью:
4. Крекинг — это гемолитический разрыв связей С-С, который протекает при нагревании и под действием катализаторов. При крекинге высших алканов образуются алкены и низшие алканы, при крекинге метана и этана образуются ацетилен:
C8H18 → C4H10 + С4Н8,
2СН4 → С2Н2 + ЗН2,
С2Н6 → С2Н2 + 2Н2.
Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.
5. Окисление. При мягком окислении метана кислородом воздуха в присутствии различных катализаторов могут быть получены метиловый спирт, формальдегид, муравьиная кислота:
|
|
Мягкое каталитическое окисление бутана кислородом воздуха - один из промышленных способов получения уксусной кислоты:
t° 2C4H 10 + 5O2 → 4CH3COOH + 2Н2О . кат
На воздухе алканы сгорают до СО2 и Н2О:
СnН2n+2 + (Зn+1)/2О2 = nСО2 + (n+1)Н2О.
6. Дегидрирование
9. Алкены. Номенклатура. Названия этих углеводородов принимают суффикс – ен (этен, пропен, бутен и т. д.); б) гомологи этилена должны отличаться друг от друга по составу молекул на группу атомов СН2; в) в молекуле каждого непредельного углеводорода при образовании двойной связи на два атома водорода меньше, чем в молекуле соответствующего предельного углеводорода; г) состав углеводородов ряда этилена (этена) выражается формулой СnН2n; д) непредельные углеводороды могут образовывать радикалы.
Способы получения: 1. В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr2О3). Например:
® H2C==CH—CH2—CH3
H3C—CH2—CH2—CH3 ® -H2 бутен-1
бутан ® H3C—CH==CH—CH3
бутен-2
Из лабораторных способов получения можно отметить следующие:
2. Отщепление галогеноводорода от галогеналканов при действии на них спиртового раствора щелочи:
H2C—CH2 ® H2C==CH2 + KCl + H2O | |
Cl H K—OH |
3. Гидрирование ацетилена в присутствии катализатора (Pd):
H—CєєC—H + H2 ® H2C==CH2
4. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3:
Н2С—СН2 ® Н2С==СН2 + Н2О | |
H OH |
этиловый спирт
5. Крекинг нефти
10. Реакции присоединения. Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.
1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды — алканы:
Н2С==СН2 + H2 ® Н3С—СН3 этилен этан
2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:
Н2С==СН2 + Cl2 ® ClH2C—CH2Cl 1,2-дихлорэтан
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.
Реакцию галогенирования обычно проводят в растворителе при обычной температуре.
Присоединение брома к алкенам (реакция бромирования) — качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных — сохраняется).
3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:
H2С==СН2 + НВr ® Н3С—CH2Вr
Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837—1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген — к менее гидрогенизированному:
Ї——————————| Н2С=СН—СН3 + Н—Вr ® Н3С—СН—СН3 ————————| | Br 2-бромпропан
Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием могильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).
Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома — к углероду с частичным положительным зарядом.
4. Гидратация (присоединение воды). В присутствии катализаторов [H2SO4 (конц.) и др.] к алкенам присоединяется вода с образованием спиртов. Например:
H3C—CH==CH2 + H—OH ® H3C—CH—CH3 | OH пропилен изопропиловый спирт
Реакции окисления. Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.
1. Окисление при обычной температуре. При действии на этилен водного раствора КМnO4 (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:
3H2C==CH2 + 2KMnO4 + 4H2O ® 3HOCH2—CH2OH + 2MnO2 + KOH
этиленгликоль
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:
H3C—CH=|=CH—CH3 + 2O2 ® 2H3C—COOH уксусная кислота
При окислении этилена кислородом воздуха в присутствии металлического серебра образуется оксид этилена:
350°C 2Н2С==СН2 + O2 ® 2Н2С——СН2 Ag \ O / оксид этилена
2. Горение алкенов. Как и алканы, непредельные соединения ряда этилена сгорают на воздухе с образованием оксида углерода (IV) и воды:
Н2С=СН2 + 3O2 ® 2СO2 + 2Н2O
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
Реакции полимеризации. За счет разрыва p-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы
11. Существует два типа номенклатуры: 1) международная номенклатура: этин; пропин; 2) рациональная номенклатура: ацетилен; метиацетилен.
Способы получения: Пиролиз метана:
Реакцию проводят электродуговым способом, пропуская метан между электродами с временем контакта 0,1-0,01 секунды. Столь малое время нагревания обусловлено тем, что ацетилен при такой температуре может разлагаться на углерод и водород.
Пиролиз этана или этилена:
Гидролиз карбида кальция:
4. Для синтеза гомологов ацетилена применяют следующие методы:
1) дегидрогалогенирование дигалогеналканов спиртовым раствором щелочи (щелочь и спирт берутся в избытке)
2) удлинение цепи (алкилирование ацетиленидов) при действии на ацетилениды алкилгалогенидами
12. 1. Галогенирование. Галогены присоединяются к алкинам в две стадии. Например, присоединение брома к ацетилену приводит к образованию дибромэтена, который, в свою очередь, реагирует с избытком брома с образованием тетрабромэтана:
|
Вr2 |
|
Вr2 |
|
СН ≡ СН |
→ |
СНВr = СНВr |
→ |
СНВr 2- СНВr2 |
Алкины, так же, как и алкены, обесцвечивают бромную виду.
2. Гидрогалогенирование. Галогеноводороды присоединяются к тройной связи труднее, чем к двойной.
|
АlСl3 |
|
СН ≡ СН + HCI |
→ |
СН2 = СНСl |
В случае избытка галогеноводорода происходит полное гидрогалогенирование, причем для несимметричных алкинов на каждой стадии присоединение идет по правилу Марковникова, например:
|
|
|
СН3 - С ≡ СН + 2НВr |
→ |
СН3 - СВr2 - СН3 . |
3. Гидратация. Присоединение воды к алкинам катализируется солями ртути (II)'
|
|
|
Hg2+. H+ |
|
|
|
CH |
≡ |
СН + Н2О |
→ |
[СН2 = СН - ОН] |
≡ |
СН3 – СН = О |
На первой стадии реакции образуется непредельный спирт, в котором гидроксильная группа находится непосредственно у атома углерода при двойной связи. Такие спирты принято называть виниловыми или енолами.
В результате реакции гидратации только ацетилен превращается в альдегид; гидратация гомологов ацетилена протекает по правилу Марковникова;, и образующиеся енолы изомеризуются в кетоны. Так, например, пропин превращается в ацетон:
|
Hg2+ |
|
СН3 – СН ≡ СН + Н2О |
→ |
[СН3 - С(ОН) = СН2] → СН3 – СО - СН3. |
Реакция гидратации алкинов была открыта М.Г. Кучеровым (1881 г.) и носит название реакции Кучерова.
4. Кислотные свойства. Особенностью алкинов, имеющих концевую тройную связь, является их способность отщеплять протон под действием сильных оснований, т.е. проявлять слабые кислотные свойства. Возможность отщепления протона обусловлена сильной поляризацией s-связи: ≡ С← Н. Причиной поляризации является высокая электроотрицательность атома углерода в sp-гибридном состоянии. Поэтому алкины, в отличие от алкенов и алканов, способны образовывать соли, называемые ацетиленидами:
R - C ≡ C-H + NaH → R-C ≡ C - Na + Н2
Ацетилениды серебра и меди (I) легко образуются и выпадают в осадок при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди (I). Эти реакции служат для обнаружения алкинов с тройной связью на конце цепи.
НС ≡ СН + 2[Ag(NH3)2]OH → Ag-C ≡ C-Ag |
↓ |
+ 2NH3 + Н2O |
|
белый осадок |
|
R-C ≡ CH + [Cu(NH3)2]Cl → R-C ≡ C- Cu |
↓ |
+ NH4Cl + NH3. |
|
красный осадок |
|
Ацетилениды серебра и меди как соли очень слабых кислот легко разлагаются при действии хлороводородной кислоты с выделением исходного алкина:
R-C = C-Cu + HCl → R-C = CH + CuCl.
5. Полимеризация. В присутствии катализаторов алкины могут реагировать друг с другом, причем в зависимости от условий образуются различные продукты. Так, под действием водного раствора CuCl и NH4Cl ацетилен димеризуется, давая винилацетилен:
НС = СН + НОСH → СН2 = СН-ОСН.
Винилацетилен обладает большой реакционной способностью; присоединяя хлороводород, он образует хлоропрен, используемый для получения искусственного каучука:
СН2 = СН-С = СН + HCl → СН2 = СН – ССl = СН2.
При пропускании ацетилена над активированным углем при 600 °С происходит тримеризация ацетилена с образованием бензола:
В аналогичные реакции тримеризации могут вступать также и ближайшие гомологи ацетилена, например:
6. Реакции окисления и восстановления. Алкины легко окисляются различными окислителями, в частности перманганатом калия. При этом раствор перманганата калия обесцвечивается, что служит указанием на наличие тройной связи. При окислении обычно происходит расщепление тройной связи, и образуются карбоновые кислоты:
R - C ≡ C-R' + 3[О] + Н2О → R - COOH + R' - COOH.
В присутствии металлических катализаторов алкины восстанавливаются путем последовательного присоединения молекул водорода, превращаясь сначала в алкены, а затем в алканы:
|
Н2 |
|
Н2 |
|
СН3 — С ≡ СН |
→ |
СН3 — СН — СН2 |
→ |
СН3 — СН2 — СН3. |
13. Алкадиены — непредельные углеводороды, содержащие две двойные связи. Общая формула алкадиенов СnН2n-2.
Если двойные связи разделены в углеродной цепи двумя или более одинарными связями (например, пентадиен-1,4), то такие двойные связи называются изолированными. Химические свойства алкадиенов не отличаются от свойств алкенов с той лишь разницей, что в реакции могут вступать не одна, а две двойные связи независимо друг от друга.
Если двойные связи разделены в цепи только одной s-связью, то их называют сопряженными. Важнейшие представители сопряженных диенов:
СН2 = СН-СН = СН2 СН2 = С(СН3)-СН = СН2. бутадиен-1,3 изопрен
Существуют также диены с системой С = С = С, называемые аленами: такие двойные связи называют кумулированными. Первый член гомологического ряда — аллен СН2 = С = СН2 .
Хим. свойства: Для алкадиенов характерны обычные реакции, свойственные алкенам. Особенность сопряженных диенов состоит в том, что две двойные связи в их молекулах функционируют как единое целое, поэтому реакции присоединения могут протекать в двух направлениях: а) к одной из двойных связей (1,2-присоединение) или б) в крайние положения сопряженной системы с образованием новой двойной связи в центре системы (1,4-присоединение). Так, присоединение брома к бутадиену может привести к двум продуктам:
|
1,2 |
|
СН2=СН-СН=СН2 + Вr2 |
→ |
СН2=СН-СНВr-СН2Вr |
или
|
1,4 |
|
СН2=СН-СН=СН2 + Вr2 |
→ |
ВrСН2-СН=СН-СН2Вr |
Важнейшее свойство диенов — их способность к полимеризации, которая используется для получения синтетических каучуков. При полимеризации бутадиена-1,3, которая протекает как 1,4-присоединение, получают бутадиеновый каучук:
nСН2=СН-СН=СН2 → (-СН2-СН=СН-СН2-)n.
Использование металлоорганических катализаторов в этой реакции позволяет получить каучук с регулярным строением, в котором все звенья цепи имеют цис-конфигурацию. Аналогичная реакция с изопреном дает синтетический изопреновый каучук, который по строению и свойствам близок к природному каучуку:
nСН2=С(СН3)-СН=СН2 → (-СН2-С(СН3)=СН-СН2-)n.
