
- •1. Основные параметры и характеристики вычислительных систем.
- •7. Иерархическая организация системы памяти.
- •8. Память с произвольным доступом. Структура.
- •9. Память с произвольным доступом. Функционирование.
- •10. Озу статического типа.
- •11. Dram (асинхронная).
- •12. Синхронная dram.
- •13. Регенерация.
- •14. Ddr dram.
- •15. Многопортовая память.
- •16. Память с адресацией по содержанию.
- •17. Организация кэш-памяти.
- •18. Режимы работы кэш-памяти.
- •21. Внешняя память. Параметры. Характеристики.
- •22. Структура накопителей на основе жестких магнитных дисков.
- •23. Физическая и логическая структуры жестких магнитных дисков.
- •24. Дисковые системы raid.
- •25. Процессор. Классификация процессоров.
- •26. Система Команд Процессора.
- •27. Методы Адресации.
- •28. Форматы команд процессора.
- •2.Двухадресные команды
- •3.Одноадресные команды
- •29. Структура процессора.
- •30. Функционирование процессора.
- •1.Архитектура фон Неймана
- •2.Суперскалярная архитектура
- •3.Конвейерная архитектура
- •31. Конфликты конвейера процессора.
- •32. Устранение конфликтов конвейера процессора .
- •33. Обобщенная структура микропроцессора.
- •34. Структура регистров процессора ia-32 Pentium.
- •35. Команды. Форматы команд процессора архитектура ia-32.
- •36. Многоядерная структура современных процессоров.
- •Архитектура многоядерных систем
- •Производительность
- •37. Видеоконтроллер. Параметры. Структура.
- •Типы видеоконтроллеров
- •38. Прерывания. Структура. Функционирование.
- •39. Режим прямого доступа к памяти. Структура. Функционирование.
- •40. Многопроцессорные вычислительные системы.
- •41. Память многопроцессорных вс
- •42 Топологии вычислительных систем
14. Ddr dram.
По сравнению с обычной памятью типа SDR SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.
У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.
Память DDR SDRAM работает на частотах в 100, 133, 166 и 200 МГц, её время полного доступа — 30 и 22,5 нс, а время рабочего цикла — 5, 3,75, 3 и 2,5 нс.
Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти обозначаются DDR200, DDR266, DDR333, DDR400.
15. Многопортовая память.
Многопортовая организация запоминающего устройства обеспечивает любому процессору и модулю ввода-вывода прямой и непосредственный доступ к банкам основной памяти (ОП). Такой подход сложнее, чем при использовании шины, поскольку требует придания ЗУ основной памяти дополнительной, достаточно сложной логики. Тем не менее это позволяет поднять производительность, так как каждый процессор имеет выделенный тракт к каждому модулю ОП. Другое преимущество многопортовой организации – возможность назначить отдельные модули памяти в качестве локальной памяти отдельного процессора. Эта особенность позволяет улучшить защиту данных от несанкционированного доступа со стороны других процессоров.
Многопортовая память - это статическое ОЗУ с двумя или более независимыми интерфейсами, обеспечивающими доступ к пространству памяти через разделенные шины адреса, данных и управления. Структура двухпортового статического ОЗУ (рис.1.) содержит единый массив памяти (COMMON CENTRAL MEMORY) и два независимых порта (PORT_L и PORT_R) для обращения к этому массиву.
Основными областями применения синхронной двухпортовой памяти являются вычислительные сети (ATM и Ethernet коммутаторы/маршрутизаторы) и беспроводная телефония (базовые станции). Микросхемы двухпортовой памяти с переключаемыми банками предназначены для применения в системах цифровой обработки изображений, системах промышленной автоматики и периферийных контроллерах. К областям применения памяти SARAM также относится оборудование для сетей передачи данных (мосты, маршрутизаторы, фреймеры и др.) [1]. Основой большинства вышеперечисленных устройств являются высокопроизводительные RISC-контроллеры и DSP. Поэтому главными требованиями, предъявляемым к характеристикам двухпортовой памяти, являются высокие быстродействие и скорость передачи данных. В последнее время все большую популярность у разработчиков завоевывают синхронные устройства, постепенно вытесняя асинхронные. Это объясняется тем, что режим синхронного обмена позволяет обеспечить оптимальное взаимодействие между устройством и шиной обмена данными.