Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры эвм.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
392.19 Кб
Скачать

36. Многоядерная структура современных процессоров.

Многоя́дерный проце́ссор — центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Архитектура многоядерных систем

Многоядерные процессоры можно классифицировать по наличию поддержки когерентности(общая память для ядер) кеш-памяти между ядрами. Бывают процессоры с такой поддержкой и без нее.

Способ связи между ядрами:

разделяемая шина

сеть (Mesh) на каналах точка-точка

сеть с коммутатором

общая кеш-память

Кеш-память: Во всех существующих на сегодняшний день многоядерных процессорах кеш-памятью

1-го уровня обладает каждое ядро в отдельности, а кеш-память 2-го уровня существует в нескольких вариантах:

разделяемая — расположена на одном кристалле с ядрами и доступна каждому из них в полном объёме. Используется в процессорах семейств Intel Core.

индивидуальная — отдельные кеши равного объёма, интегрированные в каждое из ядер. Обмен данными из кешей 2-го уровня между ядрами осуществляется через контроллер памяти — интегрированный (Athlon 64 X2, Turion X2, Phenom) или внешний (использовался в Pentium D, в дальнейшем Intel отказалась от такого подхода).

Производительность

В приложениях, оптимизированных под многопоточность, наблюдается прирост производительности на двухъядерном процессоре. Однако, если приложение не оптимизировано, то оно не будет получать практически никакой выгоды от дополнительных ядер, а может даже выполняться медленнее, чем на процессоре с меньшим количеством ядер, но большей тактовой частотой. Это в основном приложения разработанные до появления многоядерных процессоров, либо приложения, не использующие многопоточность.

37. Видеоконтроллер. Параметры. Структура.

Видеоконтроллер— специализированная микросхема, являющаяся главным компонентом схемы формирования видеоизображения в компьютерах.

До появления микросхем видеоконтроллеров схемы формирования изображения полностью строились на дискретной логике. К середине 1970-х годов ЭЛТ-дисплеи стали популярным устройством вывода информации для микрокомпьютеров, а развитие технологии производства микросхем позволило реализовать основную часть схемы формирования изображения в виде отдельной микросхемы. Это упрощало разработку подобных схем, уменьшало габариты печатных плат и потребление энергии, снизить стоимость конечных устройств. Дальнейшее развитие видеоконтроллеров привело к появлению более сложных и многофункциональных устройств — видеопроцессоров.

Главным компонентом схемы формирования изображения всегда является видеоконтроллер, а так же графический процессор, но могут использоваться и дополнительные микросхемы — ОЗУ для хранения изображения, ПЗУ для хранения графики символов.

Видеоконтроллер отвечает за генерацию необходимых синхросигналов, таких как сигналы вертикальной и горизонтальной синхронизации, сигнал обратного хода луча.

Типы видеоконтроллеров

Микросхемы видеоконтроллеров можно разделить на четыре группы по принципу их работы.

1)Video shift register — простейший тип видеоконтроллера. Генерирует синхросигналы и преобразует получаемые байты видеоданных (от процессора или контроллера ПДП) в последовательность бит, которая вместе с синхросигналами формирует выходной видеосигнал. Видеоконтроллеры этого типа обычно поддерживают только растровые видеорежимы очень низкого разрешения.

2)CRTC (Cathode Ray Tube Controller, контроллер ЭЛТ) генерируют синхросигналы и выполняют чтение ОЗУ, используемого в качестве видеопамяти. Прочитанные данные используются для формирования адреса в ПЗУ знакогенератора (для текстовых видеорежимов) или непосредственно (для графических режимов высокого разрешения). Видеоконтроллеры этого типа требуют большого количества внешних компонентов, выполняющих формирование видеосигнала, что позволяет им иметь широкий диапазон возможностей, от простейших текстовых режимов до цветной графики высокого разрешения.

3)Video interface controller — следующий шаг развития видеоконтроллеров. Практически все компоненты схемы генерации видеосигнала интегрированы в одну микросхему. Из внешних элементов требуются только аналоговые цепи формирования видеосигнала.

4)Video co-processor — более сложные устройства, использующие отдельное ОЗУ в качестве видеопамяти и способные не только отображать, но и самостоятельно обрабатывать данные в ней.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]