
- •Содержание
- •Предисловие
- •Лекция №1. Введение
- •1. Предмет физики и её связь с математикой и информатикой
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •3. Скорость материальной точки
- •3. Ускорение материальной точки
- •4. Ускорение при движении материальной точки по окружности
- •5. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №3. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Гравитационные силы (силы тяготения)
- •8. Сила тяжести и вес. Невесомость
- •9. Силы трения
- •10. Упругие силы
- •Контрольные вопросы
- •Лекция №4. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •Контрольные вопросы
- •Лекция №5. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Закон сохранения и превращения механической энергии
- •7. Соударение двух тел
- •8. Момент силы относительно неподвижного центра
- •9. Момент импульса относительно неподвижного центра
- •10. Закон сохранения момента импульса
- •Контрольные вопросы
- •Лекция №6. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Момент силы относительно оси
- •6. Второй закон Ньютона для вращающегося твердого тела
- •7. Момент инерции твердого тела
- •8. Теорема Штейнера
- •9. Закон сохранения момента импульса при вращательном движении
- •10. Кинетическая энергия вращающегося тела
- •11. Кинетическая энергия тела при плоском движении
- •Контрольные вопросы
- •Лекция №7. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №8. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Распространение колебаний в однородной упругой среде. Волны
- •10. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •11. Принцип суперпозиции. Групповая скорость
- •12. Энергия упругой волны
- •13. Интерференция волн
- •14. Стоячие волны
- •15. Характеристика звуковых волн
- •16. Эффект Доплера в акустике
- •17. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция № 9. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Список литературы
9. Распространение колебаний в однородной упругой среде. Волны
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.
Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.
В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны. Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. фактически только в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.
Н
Рис. 8.8 .
а
рис. 8.8
показано движение частиц при распространении
в среде поперечной волны. Номерами
1, 2 и т.д. обозначены
частицы, отстоящие друг от друга на
расстояние, равное (1/4)
vT,
т.е. на расстояние, проходимое волной
за четверть периода колебаний, совершаемых
частицами. В момент времени, принятый
за нулевой, волна, распространяясь вдоль
оси слева направо, достигла частицы
1,
вследствие чего частица начала смещаться
из положения равновесия вверх, увлекая
за собой следующие частицы. Спустя
четверть периода частица
1
достигает крайнего верхнего положения;
одновременно начинает смещаться из
положения равновесия частица
2.
По прошествии еще четверти
периода первая частица будет проходить
положение равновесия, двигаясь в
направлении сверху вниз, вторая частица
достигнет крайнего верхнего положения,
а третья частица начнет смещаться вверх
из положения равновесия. В момент
времени, равный Т,
первая частица закончит полный цикл
колебания и будет находиться в таком
же состоянии движения, как и в начальный
момент. Волна к моменту времени Т,
пройдя путь vT,
достигнет частицы
5.
На рис. 8.9 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц (места сгущения частиц обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью v.
|
Рис.8.9. |
На рис. 8.8 и 8.9 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблются не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.
Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются неподвижными, а волновой фронт все время перемещается.
Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.
Рассмотрим случай, когда плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия которых имеют одинаковую координату х (но различные значения координат y и z), колеблются в одинаковой фазе.
|
Рис.8.10. |
На рис.8.10 изображена кривая, которая дает смещение из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функции (х, t) для некоторого фиксированного момента времени t. С течением времени график перемещается вдоль оси х. Такой график можно строить как для продольной, так и для поперечной волны. В обоих случаях он выглядит одинаково.
Расстояние λ, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что
λ =vT (8.57)
где v – скорость волны, T – период колебаний. Длину волны можно определить так же, как расстояние между ближайшими точками среды, колеблющимися с разностью фазы, равной 2 (см. рис. 8.10).
Заменив в соотношении (8.57) T на 1/f (f – частота колебаний), получим
λf = v (8.58)
К этой же формуле можно прийти другим способом: за одну секунду источник волн совершает v колебаний, порождая в среде при каждом колебании один «гребень» и одну «впадину» волны. К тому моменту, когда источник будет завершать v-e колебание, первый «гребень» успеет пройти путь v. Следовательно, f «гребней» и «впадин» волны должны уложиться на длине v.