Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nano.doc
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
523.26 Кб
Скачать

Содержание

№ п/п

Наименование

Стр.

Введение

2

1

Межпредметные связи в учебной деятельности технических вузов

5

1.1.

Понятие и классификация межпредметных связей

7

1.2.

Типы междисциплинарных связей

9

1.3

Уровни организации учебного процесса на основе междисциплинарных связей

11

1.4

Планирование межпредметных связей

14

2.

Теоретические аспекты формирования профессиональной компетентности студентов технических вузов

17

3.

Цели создания междисциплинарных учебных комплексов

22

4

Задачи междисциплинарных программ

26

Приложение 1

Методика проведения лекционных занятий по разделу "Наноматериалы и нанотехнологии" при изучении дисциплины "Материаловедение"

29

Приложение 2

Учебная программа по дисциплине «Новые и перспективные авиационные материалы и технологии»

63

Приложение 3

Учебная программа дисциплины дополнительного профессионального образования «Перспективные материалы для авиационной техники»

74

Введение

Человеку, неискушенному в скучных научных изысканиях, свойственно верить в чудеса и искать универсальные средства для достижения всех своих желаний. Сейчас в качестве своеобразной панацеи выступают нанотехнологии. Исследовательские работы последних 10-15 лет действительно открыли важную роль нанотехнологий в различных областях науки и техники (информационных технологиях, медицине, физике, химии, материаловеде­нии, биологии, экологии и т. д.). Произошла своеобразная революция, поскольку нанотехнологический подход означает целенаправленное регулирование свойств объектов на мо­лекулярном и надмолекулярном уровне, что не было реализуемо еще несколько лет назад. Возникновение нанотехнологий и исследование наноматериалов глубоко закономерно. Сначала были путешествия, великие географические открытия и новые торговые пути. Человек изучил сполна два измерения нашего пространства - географические широту и долготу. Затем разнообразные капитаны Немо исследовали глубины океана, а Юрий Гагарин вы­шел за рамки Земли - человек начал покорять Космос. Людям покорилось третье измере­ние. Потом мы научились изучать геологические и космические события, длящиеся милли­арды лет, а также фемтосекундные процессы, на порядки величины более быстрые, чем выстрел или удар молнии. Это уже четвертое измерение, дающее ключ к пониманию ос­новных процессов мироздания. На рубеже ХХ и ХХI веков случилось, наконец, новое чудо ­мы вплотную приблизились к покорению пятого измерения - Микромира, что и ознамено­валось возникновением нанотехнологий.

Осуществляемый российской экономикой переход на инновационный путь развития ставит перед высшей школой задачу повышения качества образования. При этом инновационная экономика предъявляет особые требования к подготовке выпускников технических вузов, которые должны способствовать развитию высокотехнологичных производств.

Актуальной задачей, стоящей сегодня перед высшим профессиональным образованием, становится практическая реализация компетентностного подхода. С введением новых образовательных стандартов третьего поколения ФГОС ВПО, обеспечивающих взаимосвязь фундаментальной и практической подготовки, в технических вузах требуется обновление содержания, форм, методов и средств обучения с позиции компетентностного подхода.

В настоящее время среди исследователей есть понимание того, что формирование профессиональной компетентности выпускника технического вуза невозможно без осуществления профессионально направленного (контекстного) обучения, при котором моделируется профессиональный и социальный контекст будущей инженерной деятельности, а также без применения междисциплинарной интеграции.

Важная роль междисциплинарной интеграции в обучении стала особенно очевидна на фоне интеграционных процессов, происходящих в современной науке и технике. В последние годы в результате междисциплинарного научного синтеза, соединения знаний из различных областей науки появились фундаментальные научные достижения, которые способны стать основой инновационных технологий производства. Будущий инженер должен уметь комплексно применять знания различных дисциплин в профессиональной деятельности.

Современная система университетского образования требует развития междисциплинарных естественнонаучных связей, в первую очередь, разработки инновационных подходов преподавания в РФ науки о материалах, которая чрезвычайно популярна в силу высокой инновационной отдачи исследований в данной области.

Последнее десятилетие для высшей школы России принесло осознание того, что цели, стоящие перед образовательной системой, определяются рынком труда. В научных исследованиях и нормативно-правовой документации, регламентирующей образовательную деятельность, в качестве основной задачи декларируется формирование профессиональных компетенций.

Компетенция представляет собой интегрированное понятие и выражает способность применять элементы знаний и умений в самых различных ситуациях, способность делать что-либо компетентно, т.е. предвидя или прогнозируя результат этой деятельности. Для этого в структуре учебного процесса должны быть отражены сложность и многообразие профессионально значимых объектов и ситуаций, их принципиальную несводимость к сумме своих отдельных предметных сущностей. К сожалению, сложившаяся предметная или дисциплинарная система профессионального обучения формирует определенные противоречия между разрозненными по учебным предметам знаниями и противоречия между профессиональной компетентностью как интегральной характеристикой качества обучения и средствами ее формирования в рамках отдельных учебных предметов.

Указанные противоречия могут быть устранены лишь за счет педагогической интеграции содержания образования, за счет сознательного формирования и усиления в учебном процессе междисциплинарных или межпредметных связей. Межпредметные связи (МПС) разрешают существующие в предметной системе обучения противоречие между разрозненным усвоением разнопредметных знаний и необходимостью их последующего синтеза и комплексного применения в практике и профессиональной деятельности. Однако анализ МПС, способы их формирования и внедрения в учебный процесс в контексте компетентностного обучения в литературе практически отсутствуют.

«Наука о материалах» принципиально отличается от традиционного «материаловедения», являющегося прагматически ориентированной дисциплиной, которую преподают исключительно в технических и технологических вузах с целью подготовки узких специалистов, нацеленных на разработку и эксплуатацию определенного сорта техники и промышленных технологий.

Интерес к проблеме межпредметных связей не случаен: современные требования рынка труда предполагают существенные изменения содержания и методов обучения. Эти изменения вызваны важными процессами современного развития наук - их интеграции и дифференциации. Фундаментальные знания, заложенные общим образованием, развиваются по мере приобретения общих представлений на производстве. Знание приобретает конкретное содержание благодаря профессиональному образованию, несущему информацию о конкретных производственных процессах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]