
- •1.Модель строения атома по Резерфорду. Атомные спектры. Уравнение Ридберга. Соотношение Планка.
- •Модель Бора строения атома водорода. Постулаты Бора
- •Соотношение де Бройля. Корпускулярно-волновой дуализм. Волновая функция электрона. Атомная орбиталь.
- •Квантовые числа и их физический смысл. Электронное облако
- •Многоэлектронные атомы. Понятие уровня, подуровня. Принцип минимальной энергии. Принцип Паули, правило Гунда.
- •Периодическая система элементов. Строение атома. Порядок заполнения разрешенных состояний при переходе от элемента к элементу в периодах. Причина периодичности.
- •Порядок заполнения энергетических уровней в атомах. Правило Клечковского.
- •Энергетическое состояние электронов внешних уровней. Энергия ионизации. Сродство к электрону. Электроотрицательность. Размеры атомов и ионов.
- •Газообразное состояние вещества. Законы идеальных газов. Закон Авогадро. Уравнение состояния идеального газа. Реальные газы.
- •Жидкое состояние вещества. Свойства жидкостей. Жидкие кристаллы. Переохлажденные жидкости.
- •Сигма-,пи-,и дельта-связи.
- •Гибридизация атомных орбиталей. Пространственная конфигурация молекул.
- •Метод валентных связей. Валентность. Обменный механизм образования ковалентной связи.
- •Донорно-акцепторный механизм образования ковалентной связи.
- •Комплексные соединения. Структура комплексного соединения.
- •Межмолекулярные взаимодействия. Слабые и сильные взаимодействия.
- •Химическая связь в твердых телах. Металлические, ионные, атомно-ковалентные и молекулярные кристаллы.
- •Метод молекулярных орбиталей. Связывающая и разрыхляющая молекулярные орбитали.
- •Ионная связь. Степень ионности связи.
- •Слабые межмолекулярные взаимодействия. Силы Ван Дер Ваальса.
- •Сильные межмолекулярные взаимодействия. Водородная и ковалентная связи.
- •Вопросы изучаемые химической термодинамикой. Система и окружающая среда. Внутренняя энергия, теплота, работа.
- •Первый закон термодинамики. Энтальпия системы.
- •Тепловой эффект химической реакции. Независимость теплового эффекта реакции от пути процесса. Закон Гесса.
- •Стандартное состояние. Теплота образования. Расчет тепловых эффектов по теплотам образования.
- •Теплоёмкость системы. Изобарная и изохорная теплоёмкости. Уравнение Кирхгофа.
- •Самопроизвольные и несамопроизвольные процессы. Энтропия. Третий закон термодинамики. Постклат Планка. Абсолютная энтрапия.
- •Второй закон термодинамики для изолированных систем.
- •Статическая трактовка энтропии. Уравнение Больцмана.
- •Термодинамический потенциал (энергия) Гиббса. Направление и предел протекания самопроизвольных процессов. Состояние равновесия.
- •Химическое равновесие. Смещение химического равновесия. Принцип Ле-Шателье.
- •Фазовые равновесия. Правило фаз Гиббса.
- •Однокомпонентные системы. Диаграмма состояния однокомпонентной системы.
- •Адсорбция газов на поверхности твердого тела. Физическая и химическая адсорбция. Отличие физической адслрбции от химической.
- •Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра.
- •Адсорбционное равновесие. Условие достижения адсорбционного равновесия.
- •Предмет химической кинетики. Механизмы реакций
- •Скорость гомогенной химической реакции. Закон действия масс. Константа скорости реакции. Константа равновесия.
- •Молекулярность реакции. Частные и общий кинетические порядки химической реакции.
- •Скорость гетерогенной химической реакции. Стадии гетерогенного процесса. Лимитирующая стадия.
- •Температурная зависимость скорости химической реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации.
- •Влияние энергии излучения на химические реакции. Фотохимические реакции и законы фотохимии.
- •Типы растворов. Способы выражения концентрации растворов. Расчет молярной концентрации.
- •Нормальность и нормальная концентрация раствора, их определение и расчет. Эквивалент в-ва.
- •Титр и молярность раствора, мольная доля растворенного в-ва, их определение и расчеты.
- •Растворимость. Произведение растворимости.
- •Растворы неэлектролитов. Закон Рауля. Изменение температуры кипения и замерзания растворов.
- •Осмос. Осмотическое давление. Уравнение Вант-Гоффа для осмотического давления растворов неэлектролитов.
- •Растворы электролитов. Изотонический коэффициент. Степень диссоциации электролитов. Константа диссоциации. Слабые и сильные электролиты.
- •Электролитическая диссоциация и ионное произведение воды. Водородный показатель среды.
- •Влияние разбавленного слабого электролита на степень его диссоциации. З-н Оствальда разбавления электролита. Сильные электролиты.
- •Определение кислот и оснований с позиции теории Аррениуса их электролитической диссоциации.
- •Протонная теория кислот и оснований.
- •Электронная теория кислот и оснований. Апротонные(льюисовские) кислоты.
- •Коллоидные растворы. Строение коллоидных частиц и мицелл.
- •Молекулярно-кинетические, оптические и электрокинетические свойства коллоидных растворов.
- •Определение окислительно-восстановительных реакций. Степень окисления элементов в соединениях. Окислители и восстановители.
- •Электродные потенциалы. Устройство и принцип работы гальванического элемента Даниэля-Якоби.
- •Электродвижущая сила элемента.
- •Потенциалы металлических и газовых электродов. Уравнение Нернста.
- •Потенциалы водородного и кислородного электродов. Водородная шкала потенциалов.
- •Электролиз. Законы Фарадея.
- •Последовательность электродных процессов при электролизе. Применение электролиза.
- •Катализ. Гомогенный и гетерогенный катализ.
- •Определение и классификация коррозионных процессов.
- •Химическая коррозия. Термодинамика и кинетика химической коррозии.
- •Электрохимическая коррозия и ее механизм.
- •Термодинамика электрохимической коррозии. Условия возможности коррозии с кислородной и водородной деполяризацией.
- •Защита металлов от коррозии. Защитные покрытия. Легирование металлов.
- •Электрохимическая защита металлов.
Определение окислительно-восстановительных реакций. Степень окисления элементов в соединениях. Окислители и восстановители.
Окисли́тельно-восстанови́тельные реа́кции — это химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем. При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества, называются донорами электронов, а атомы окислителя — акцепторами электронов. Сте́пень окисле́ния (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов. Окисли́тель — вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель — это акцептор электронов Восстановле́нием называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается. Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:
Электродные потенциалы. Устройство и принцип работы гальванического элемента Даниэля-Якоби.
Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз. В гальваническом элементе происходит непосредственное преобразование энергии химической реакции в электрическую энергию. Сосуд А и соединяющая оба сосуда трубка В заполнены раствором ZnSO4, сосуд Б – раствором CuSO4. В первый из них опущена цинковая пластинка, во второй – медная. Если соединить обе пластинки проводом, то по нему в указанном стрелкой направлении начнут перемещаться электроны (потечет электрический ток). Трубка В обеспечивает замкнутость цепи, по ней перемещаются ионы SO42–. Электрод, на котором происходит процесс восстановления (на рисунке 6.1 – медный) называется катодом, а электрод, на котором осуществляется окисление (в рассмотренном примере – цинковый) – анодом.
В данном случае электродные процессы являются гетерогенными, т.к. окисленная и восстановленная формы находятся в разных фазах *. В более общем виде гетерогенный электродный процесс можно записать в виде: Me (ВФ, тв. фаза) – ne– Men+ (aq) (ОФ, раствор) На границе раздела фаз возникает двойной электрический слой, состоящий из катионов Men+ (в растворе) и электронов (в металле), что приводит к появлению потенциала E(Men+/Me). Его абсолютная величина определению не поддается, однако легко измеряется разность потенциалов катода и анода, которая называется электродвижущей силой (ЭДС) гальванического элемента DE=Eк–Eа. Если в таких устройствах условно считать потенциал какого-то электрода равным нулю, то измерением ЭДС можно получить относительные значения других электродных потенциалов, что важно для сравнительной количественной характеристики электродов.Условно за нуль принят потенциал стандартного водородного электрода, который состоит из платиновой пластинки, покрытой платиновой чернью и частично погруженной в раствор кислоты с активной концентрацией ионов водорода, равной 1 моль/л. Электрод омывается газообразным водородом под давлением 1,013×105 Па (1 атмосфера), что приводит к образованию системы: 2 H+ + 2eH2 Для измерения электродных потенциалов металлов, например меди, составляют гальванический элемент, в котором вторым электродом служит стандартный водородный электрод. В основе работы составленного гальванического элемента лежит реакция Cu2+ + H2 ® 2H+ + Cu На схеме гальванического элемента границы раздела фаз показывают одной вертикальной чертой, а электроды отделяют друг от друга двумя вертикальными чертами. Анод на схеме указывают слева, а катод – справа:А (–) Pt(H2)|2H+||Cu2+|Cu (+) ККатодом в этом случае является медный электрод. ЭДС гальванического элемента, измеренная при концентрации (активности) ионов меди 1 моль/л, равна 0,34 В и может быть выражена как DE=E(Cu2+/Cu)–E(2H+/H2). Так как E(2H+/H2) принят за нуль, то E(Cu2+/Cu)=DE=0,34В при стандартных условиях. Если медь заменить цинком, то катодом будет водородный электрод. Тогда E(Zn2+/Zn)= –DE= –0,76ВЭлектродные потенциалы металлов, измеренные по отношению к водородному электроду при стандартных условиях, т.е. активной концентрации ионов металла в растворе, равной 1 моль/л, и температуре 25°С (298 К), называют стандартными и обозначают Е°