- •1.Модель строения атома по Резерфорду. Атомные спектры. Уравнение Ридберга. Соотношение Планка.
- •Модель Бора строения атома водорода. Постулаты Бора
- •Соотношение де Бройля. Корпускулярно-волновой дуализм. Волновая функция электрона. Атомная орбиталь.
- •Квантовые числа и их физический смысл. Электронное облако
- •Многоэлектронные атомы. Понятие уровня, подуровня. Принцип минимальной энергии. Принцип Паули, правило Гунда.
- •Периодическая система элементов. Строение атома. Порядок заполнения разрешенных состояний при переходе от элемента к элементу в периодах. Причина периодичности.
- •Порядок заполнения энергетических уровней в атомах. Правило Клечковского.
- •Энергетическое состояние электронов внешних уровней. Энергия ионизации. Сродство к электрону. Электроотрицательность. Размеры атомов и ионов.
- •Газообразное состояние вещества. Законы идеальных газов. Закон Авогадро. Уравнение состояния идеального газа. Реальные газы.
- •Жидкое состояние вещества. Свойства жидкостей. Жидкие кристаллы. Переохлажденные жидкости.
- •Сигма-,пи-,и дельта-связи.
- •Гибридизация атомных орбиталей. Пространственная конфигурация молекул.
- •Метод валентных связей. Валентность. Обменный механизм образования ковалентной связи.
- •Донорно-акцепторный механизм образования ковалентной связи.
- •Комплексные соединения. Структура комплексного соединения.
- •Межмолекулярные взаимодействия. Слабые и сильные взаимодействия.
- •Химическая связь в твердых телах. Металлические, ионные, атомно-ковалентные и молекулярные кристаллы.
- •Метод молекулярных орбиталей. Связывающая и разрыхляющая молекулярные орбитали.
- •Ионная связь. Степень ионности связи.
- •Слабые межмолекулярные взаимодействия. Силы Ван Дер Ваальса.
- •Сильные межмолекулярные взаимодействия. Водородная и ковалентная связи.
- •Вопросы изучаемые химической термодинамикой. Система и окружающая среда. Внутренняя энергия, теплота, работа.
- •Первый закон термодинамики. Энтальпия системы.
- •Тепловой эффект химической реакции. Независимость теплового эффекта реакции от пути процесса. Закон Гесса.
- •Стандартное состояние. Теплота образования. Расчет тепловых эффектов по теплотам образования.
- •Теплоёмкость системы. Изобарная и изохорная теплоёмкости. Уравнение Кирхгофа.
- •Самопроизвольные и несамопроизвольные процессы. Энтропия. Третий закон термодинамики. Постклат Планка. Абсолютная энтрапия.
- •Второй закон термодинамики для изолированных систем.
- •Статическая трактовка энтропии. Уравнение Больцмана.
- •Термодинамический потенциал (энергия) Гиббса. Направление и предел протекания самопроизвольных процессов. Состояние равновесия.
- •Химическое равновесие. Смещение химического равновесия. Принцип Ле-Шателье.
- •Фазовые равновесия. Правило фаз Гиббса.
- •Однокомпонентные системы. Диаграмма состояния однокомпонентной системы.
- •Адсорбция газов на поверхности твердого тела. Физическая и химическая адсорбция. Отличие физической адслрбции от химической.
- •Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра.
- •Адсорбционное равновесие. Условие достижения адсорбционного равновесия.
- •Предмет химической кинетики. Механизмы реакций
- •Скорость гомогенной химической реакции. Закон действия масс. Константа скорости реакции. Константа равновесия.
- •Молекулярность реакции. Частные и общий кинетические порядки химической реакции.
- •Скорость гетерогенной химической реакции. Стадии гетерогенного процесса. Лимитирующая стадия.
- •Температурная зависимость скорости химической реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации.
- •Влияние энергии излучения на химические реакции. Фотохимические реакции и законы фотохимии.
- •Типы растворов. Способы выражения концентрации растворов. Расчет молярной концентрации.
- •Нормальность и нормальная концентрация раствора, их определение и расчет. Эквивалент в-ва.
- •Титр и молярность раствора, мольная доля растворенного в-ва, их определение и расчеты.
- •Растворимость. Произведение растворимости.
- •Растворы неэлектролитов. Закон Рауля. Изменение температуры кипения и замерзания растворов.
- •Осмос. Осмотическое давление. Уравнение Вант-Гоффа для осмотического давления растворов неэлектролитов.
- •Растворы электролитов. Изотонический коэффициент. Степень диссоциации электролитов. Константа диссоциации. Слабые и сильные электролиты.
- •Электролитическая диссоциация и ионное произведение воды. Водородный показатель среды.
- •Влияние разбавленного слабого электролита на степень его диссоциации. З-н Оствальда разбавления электролита. Сильные электролиты.
- •Определение кислот и оснований с позиции теории Аррениуса их электролитической диссоциации.
- •Протонная теория кислот и оснований.
- •Электронная теория кислот и оснований. Апротонные(льюисовские) кислоты.
- •Коллоидные растворы. Строение коллоидных частиц и мицелл.
- •Молекулярно-кинетические, оптические и электрокинетические свойства коллоидных растворов.
- •Определение окислительно-восстановительных реакций. Степень окисления элементов в соединениях. Окислители и восстановители.
- •Электродные потенциалы. Устройство и принцип работы гальванического элемента Даниэля-Якоби.
- •Электродвижущая сила элемента.
- •Потенциалы металлических и газовых электродов. Уравнение Нернста.
- •Потенциалы водородного и кислородного электродов. Водородная шкала потенциалов.
- •Электролиз. Законы Фарадея.
- •Последовательность электродных процессов при электролизе. Применение электролиза.
- •Катализ. Гомогенный и гетерогенный катализ.
- •Определение и классификация коррозионных процессов.
- •Химическая коррозия. Термодинамика и кинетика химической коррозии.
- •Электрохимическая коррозия и ее механизм.
- •Термодинамика электрохимической коррозии. Условия возможности коррозии с кислородной и водородной деполяризацией.
- •Защита металлов от коррозии. Защитные покрытия. Легирование металлов.
- •Электрохимическая защита металлов.
Второй закон термодинамики для изолированных систем.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу. Существуют несколько эквивалентных формулировок второго начала термодинамики: Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» (такой процесс называется процессом Клаузиуса). Постулат Томсона: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).
Статическая трактовка энтропии. Уравнение Больцмана.
Уравнение
Больцмана описывает эволюцию во времени
(t) функции распределения плотности
f(x, p, t) в одночастичном фазовом
пространстве, где x и p — координата и
импульс соответственно. Распределение
определяется так, что
пропорционально числу частиц в фазовом
объёме d³x d³p в момент времени t. Уравнение
Больцмана
Здесь F(x, t) — поле сил, действующее на
частицы в жидкости или газе, а m — масса
частиц. Слагаемое в правой части
уравнения добавлено для учёта столкновений
между частицами. Если оно равно нулю,
то частицы не сталкиваются вовсе.
Статистическая трактовка энтропии -
мера вероятности осуществления
какого-либо макроскопического состояния.
Термодинамический потенциал (энергия) Гиббса. Направление и предел протекания самопроизвольных процессов. Состояние равновесия.
энергия Гиббса, или потенциал Гиббса это термодинамический потенциал следующего вида: G=U+PV-TS Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.) Понятие энергии Гиббса широко используется в термодинамике и химии. Термодинамическое равновесие — предельное состояние, к которому стремится термодинамическая система, изолированная от внешних воздействий, то есть в каждой точке системы устанавливается термическое, механическое и химическое равновесие (происходит выравнивание температуры и давления, и все возможные химические реакции достигают состояния, когда в каждом элементарном химическом процессе скорость прямой реакции равна скорости обратной). Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, Na с большой скоростью движется по поверхности, так как идет выделение водорода проверить.)
Химическое равновесие. Смещение химического равновесия. Принцип Ле-Шателье.
Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причем скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем. А + В ⇄ С + D Перевод равновесной химической системы из одного состояния равновесия в другое называется смещением (сдвигом) химического равновесия, которое осуществляется изменением термодинамических параметров системы - температуры, концентрации, давления При смещении равновесия в прямом направлении достигается увеличение выхода продуктов, а при смещении в обратном направлении - уменьшение степени превращения реагента. И то, и другое может оказаться полезным в химической технологии. Направление сдвига химического равновесия определяется принципом Ле-Шателье: если на систему в состоянии истинного равновесия воздействовать извне, изменяя термодинамические параметры, то равновесие сместится в том направлении, которое ослабит эффект внешнего воздействия.
