
- •Вопрос 5
- •Вопрос 13 подстановок группа- совокупность подстановок
- •26(37). Понятие логической функции. Способы задания логических функций.
- •1) Табличный способ
- •2) Числовой способ
- •3) Координатный способ
- •4) Аналитический способ
- •27(38). Булева алгебра. Основные свойства операций булевой алгебры. Понятие двойственности и самодвойственной логической функции.
- •28(39). Алгебра Жегалкина. Основные свойства операций алгебры Жегалкина.
- •29(40). Алгебра Жегалкина. Представление логических функций полиномом Жегалкина.
- •30(41). Разложение логической функции по переменным. Понятие совершенной дизъюнктивной нормальной формы логической функции. Понятие совершенной конъюнктивной нормальной формы логической функции.
- •31(42). Понятие полинома логической функции(полинома Жегалкина). Понятие линейной логической функции.
31(42). Понятие полинома логической функции(полинома Жегалкина). Понятие линейной логической функции.
Понятие полинома логической функции(полинома Жегалкина)
Полином Жегалкина — многочлен над кольцом , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ)."Линейная" функция.
Понятие линейной логической функции
Это
- такая логическая функция, которую
можно выразить через
,
0 и 1.
Чтобы узнать, линейна ли функция, надо выразить ее через полином Жегалкина и посмотреть, не встречается ли там операция &. Если нет, то функция линейна. Для функций от 1 и 2 переменных мы уже приводили формулы, выражающие их через &, и константы.
Штрих Шеффера
|
Стрелка Пирса
|
Сложение по модулю 2
|