
- •1.Язык логики высказываний. Простые высказывания, сложные выск, лог связки. Роль связок в естественном языке.
- •2.Синтаксис языка логики высказываний: алфавит и правила построения формул. Семантика языка логики высказываний, интерпретация формул.
- •3.Свойства формул: общезначимость, выполнимость, противоречивость.
- •4.Основные схемы логически правильных рассуждений.
- •7. Бинарные функции алгебры логики.
- •5.Алгебра логики. Функции алгебры логики. K-значные логики.
- •6.Способы задания функций алгебры логики. Единичные и нулевые наборы функций алгебры логики. Фиктивные (несущественные) переменные.
- •8.Суперпозиции и формулы. Глубина формулы. Способы записи формул.
- •10.Полнота и замкнутость Функционально полные базисы. Булева алгебра логических операций. Основные эквивалентные соотношения (законы) в булевой алгебре.
- •11.Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- •12. Днф, скнф, сднф, кнф. Приведение к кнф и днф.
- •9. Эквивалентные формулы. Способы установления эквивалентности формул.
- •13. Двойственность.
- •14. Алгебра Вебба, алгебра Шеффера, импликативная алгебра, коимпликативная алгебра, алгебра Жегалкина.
- •16. Конечнозначные логики. Алгебра Вебба, алгебра Поста, алгебра Россера–Тьюкетта.
- •15.Полиномы Жегалкина. Процедура приведения к пнф.
- •17. Исчисление высказываний как формальная система, множественность аксиоматизаций. Проблема выводимости. Прямой вывод.
- •18.Теорема дедукции. Связь выводимости и истинности формул в логике высказываний. Выполнимые и общезначимые формулы.
- •19.Понятие логического следования, проблема дедукции. Принцип дедукции. Правило резолюций, метод резолюций. Стратегии метода резолюций.
- •21. Алгоритм построения резолюций для множества фраз Хорна.
- •22. Предикат. Предикаты и отношения. Предикаты и функции. Предикаты и высказывания.
- •23. Синтаксис языка логики предикатов: алфавит, термы, атомы, правила построения формул.
- •24. Кванторные операции. Свободные и связанные вхождения переменных,Логический квадрат.
- •25. Множество истинности предикатов. Равносильность и следование предикатов.
- •27. Префиксная нормальная форма. Процедура получения префиксной нормальной формы.
- •28. Методы доказательства в логике предикатов.
- •29. Исчисление предикатов. Формальный вывод в исчислении предикатов. Правило переименования свободных переменных. Правило переименования связанных переменных.
- •30. Выводимость и истинность в логике предикатов. Эквивалентные преобразования.
- •31. Предваренная, сколемовская и клаузальная формы. Алгоритм получения клаузальной формы.
- •32. Метод резолюций в логике предикатов. Теорема Черча.
- •33. Принцип логического программирования.
- •34. Применение логики предикатов в логико-математической практике.
- •35. Классификация высказываний по Аристотелю
- •36. Методы рассуждений. Аристотелева силлогистика. Теоретико-множественная интерпретация аристотелевой силлогистики
- •37. Принцип полной дизъюнкции в предикатной форме
- •38 Метод (полной) математической индукции
- •39. Необходимые и достаточные условия
- •41. Вывод и выводимость в формальной теории. Разрешимые и неразрешимые формулы. Доказательство и доказуемость. Теорема формальной теории.
- •42. Основные свойства формальных систем: непротиворечивость, полнота, разрешимость. Полнота и непротиворечивость исчисления высказываний. Полнота и непротиворечивость исчисления предикатов.
- •43. Прикладные исчисления предикатов. Формальная арифметика. Теорема Генцена о непротиворечивости формальной арифметики.
- •44. Теоремы о неполноте формальных систем, смысл и значение теорем Геделя для практической информатики.
- •45 Неклассические логики.
- •46. Интуиционистская логика.
- •47. Нечеткая логика.
- •49. Временные логики. Приложение временных логик к программированию.
- •51. Многозначные логики. Трёхзначная логика я. Лукасевича. M-значная логика э. Поста.
- •52. Предпосылки возникновения теории алгоритмов. Основные требования к алгоритмам. Подходы к уточнению понятия «алгоритм». Три основных типа универсальных алгоритмических моделей.
- •53.Машина Тьюринга. Конфигурация машины Тьюринга. Функция, правильно вычислимая по Тьюрингу. Эквивалентные машины Тьюринга. Композиция машин Тьюринга.
- •54. Вычисление предикатов на машине Тьюринга.
- •55. Универсальная машина Тьюринга. План построения универсальной машины Тьюринга.
- •56. Тезис Тьюринга
- •57.Проблема остановки как пример алгоритмически неразрешимых проблем.
- •58. Машина Поста.
- •59. Рекурсивные функции. Примитивно-рекурсивные функции. Примитивно-рекурсивные операторы. Частично-рекурсивные функции. Тезис Черча.
- •60. Вычислимость и разрешимость. Нумерация алгоритмов. Алгоритмически разрешимые и неразрешимые задачи. Проблема остановки, проблема самоприменимости, проблема пустой ленты.
- •61. Требование результативности и теория алгоритмов.
- •62. Разрешимые и перечислимые множества. Связь между разрешимостью и перечислимостью множеств. Теорема Райса.
- •63. Сложность алгоритмов. Меры сложности алгоритмов. Сложность задачи. Массовые и индивидуальные задачи.
- •68.Полиномиальный алгоритм. Легко- и трудноразрешимые задачи, классы задач p и np.
- •70. Недетерминированная машина Тьюринга (нмт).
- •71 Полиномиальная сводимость и np-полнота. Np-полные задачи. Примеры np-полных задач. Теорема Кука. Примеры практически значимых np-полных задач.
- •72. Теория формальных грамматик. Формальные порождающие грамматики. Язык, порождаемый грамматикой.
- •73. Классификация грамматик и порождаемых ими языков.
- •74.Неукорачивающие грамматики и разрешимость языка.
- •75.Метаязык Бэкуса.
- •76. Контекстно-свободные грамматики. Приведение контекстно-свободных грамматик.
- •77.Алгоритмические проблемы для грамматик.
- •78.Алгоритмические проблемы для контекстно-свободных грамматик.
- •79. Конечный автомат. Способы задания автоматов.
- •80.Автоматное отображение и его свойства. Изоморфизм и эквивалентность автоматов. Неотличимые автоматы.
- •81.Минимальный автомат. Алгоритм Мили нахождения эквивалентных состояний.
- •82. Частичные автоматы и их минимизация.
- •83.Интерпретация автоматов. Основные проблемы абстрактной теории автоматов.
- •84.Автоматы Мура. Событие. Представление событий в автоматах.
- •59. Рекурсивные функции. Примитивно-рекурсивные функции. Примитивно-рекурсивные операторы. Частично-рекурсивные функции. Тезис Черча.
- •50.Алгоритмические логики. Принципы построения алгоритмической логики. Алгоритмическая логика Хоара.
- •64.Асимптотическая сложность, порядок сложности. Сложность в среднем и в худшем случае.
- •65.Трудоемкость алгоритмов. Классификация алгоритмов по виду функции трудоёмкости
- •85. Автономные автоматы.
- •86. Класс множеств, представимых конечными автоматами.
- •Синтаксис языка логики высказываний: алфавит и правила построения формул. Семантика языка логики высказываний, интерпретация формул.
- •Синтаксис языка логики высказываний: алфавит и правила построения формул. Семантика языка логики высказываний, интерпретация формул.
83.Интерпретация автоматов. Основные проблемы абстрактной теории автоматов.
Конечный автомат — абстрактная, но с функциональной точки зрения довольно точная модель дискретного (цифрового) вычислительного или управляющего устройства. Входная буква — это входной сигнал (точнее, комбинация сигналов на всех входах устройства), входное слово — последовательность входных сигналов, поступающих в автомат в дискретные моменты времени (такты) t =1, 2, 3...; выходное слово — последовательность выходных сигналов, выдаваемых автоматом; состояния автомата — это комбинации состояний запоминающих элементов устройства.
При подходе к теории автоматов как к части теории алгоритмов центральной проблемой является изучение возможностей автоматов в терминах множеств слов, с которыми работают автоматы. Можно выделить два основных аспекта «работы» автоматов:
1) автоматы распознают входные слова, т. е. отвечают на вопрос, принадлежит ли поданное на вход слово данному множеству (это автоматы-распознаватели);
2) автоматы преобразуют входные слова в выходные, т. е. реализуют автоматные отображения (автоматы-преобразователи).
3) Задачи описания автоматов и их реализации, т. е. представления автомата как структуры, состоящей из объектов фиксированной сложности (элементов). Помимо важного прикладного значения таких задач для проектирования цифровых схем, их исследование стало, быть может, наиболее существенным вкладом теории автоматов в дискретную математику, поскольку в его ходе впервые было введено и подробно изучено понятие сложности. Это понятие, возникнув как обобщение естественной характеристики цифровой схемы — числа ее элементов, постепенно становится одним из центральных понятий теории алгоритмов вообще; многие количественные характеристики алгоритма, — память, быстродействие, объем собственного описания (программы) — являются различными аспектами его сложности. В этом отношении теория автоматов оказалась наиболее продвинутой ветвью теории алгоритмов.
4) Фон Нейман рассматривал автоматы как удобный язык для описания основных законов взаимодействия сложных систем, т. е. по существу как метаязык кибернетики.
84.Автоматы Мура. Событие. Представление событий в автоматах.
Конечный автомат называется автоматом Мура, если его функция выходов зависит только от состояний, т.е. для любых s, ai, aj f(s, ai) = f(s, aj). Функцию выходов автомата Мура естественно считать одноаргументной функцией; обычно ее обозначают буквой m и называют функцией отметок. В графе автомата Мура выход пишется не на ребрах, а при вершине. Общая модель конечного автомата, которая рассматривалась ранее, называется автоматом Мили.
Представление событий в автоматах. Множество слов во входном алфавите называется событием. Этот термин стал традиционным в теории автоматов, хотя и необязателен: можно было обойтись просто «множеством слов». Другой термин для множества слов, пришедший из теории грамматик, — «язык». Событие E Í A* представимо в автомате M = (A, S, j, s1, F), если j(s1, a) Î F тогда и только тогда, когда ÎaE. Всякому автомату (при фиксированных s1 и F) однозначно соответствует представимое в нем событие; на графе автомата это событие изображается множеством всех путей, ведущих из s1 в вершины из F. Событие называется представимым (в конечном автомате), если существует конечный автомат, в котором оно представимо. Другие названия этого понятия — множество, определимое, или допускаемое, или распознаваемое конечным автоматом. Все эти термины также не обязательны, поскольку представимое в автомате событие — это конечно-автоматный аналог разрешимого множества; событие Е, представимое в автомате M, можно было бы назвать множеством, разрешимым автоматом M.