- •1. Задачи и функции операционной системы компьютера. Классификация ос. Основные современные ос.
- •2, 4. Архитектура современных ос. Структура ос unix.
- •3. Архитектура современных ос. Структура ос Windows nt.
- •4. Архитектура современных ос. Системы с монолитным (макро-) ядром и с микроядром.
- •5. Архитектура современных ос. Ос с множественными интерфейсами прикладных программ на примере ос Windows nt.
- •6. Процессы и потоки в ос. Понятие процесса. Атрибуты процесса. Создание нового процесса в различных ос.
- •7, 6. Процессы и потоки в ос. Понятие процесса. Жизненный цикл процесса. Различные состояния процесса.
- •8. Процессы и потоки в ос. Понятие нити (thread). Основные отличия нити от процесса.
- •9, 11, 12. Процессы и потоки в ос. Необходимость синхронизации при работе с общими ресурсами. Способы синхронизации.
- •10. Механизмы синхронизации. Понятие семафора (semaphore) и основные операции с ним. Двоичный семафор.
- •11. Механизмы синхронизации. Понятие мьютекса (mutex) и основные операции с ним. Пример использования мьютекса для синхронизации нитей.
- •12. Механизмы синхронизации. Сравнение мьютекса и двоичного семафора.
- •13. Управление оперативной памятью. Способы защиты оперативной памяти процесса от случайного или злонамеренного вторжения из другого процесса. Сегментная организация памяти. Виртуальная память.
- •14, 13, 15. Управление оперативной памятью. Понятие виртуальной памяти. Поддержка вп со стороны процессора (на примере процессора Intel x86). Перевод виртуального адреса в адрес реальной памяти.
- •15. Управление оперативной памятью в современных ос. Виртуальная память процесса и ее отображение в реальную оперативную память компьютера. Файл подкачки.
- •16. Цели и задачи файловой системы ос. Многоуровневая организация файловой системы. Логическая и физическая фс.
- •17. Управление виртуальной памятью в современных ос. Алгоритмы подкачки и вытеснения.
- •18. Логическая файловая система ос Windows nt.
- •19. Логическая файловая система ос unix.
- •20. Физическая организация файловой системы. Файловая система fat.
- •21. Физическая организация файловой системы. Файловая система System V (s5fs).
- •22. Физическая организация файловой системы. Файловая система ntfs.
- •23. Управление вводом/выводом. Понятие аппаратного прерывания и его обработка.
- •24. Управление вводом/выводом. Синхронный и асинхронный ввод/вывод.
- •25. Управление безопасностью. Пользователь, его атрибуты и права доступа.
- •26. Управление безопасностью. Задача администрирования вычислительной системы и компьютерной сети.
- •27. Управление доступом к файлам в ос unix.
- •28. Управление доступом к файлам в ос Windows nt. Списки прав доступа.
- •29. Язык программирования Java. Виртуальная машина Java. Технология Java.
- •30. Платформа .Net. Основные идеи и положения. Языки программирования .Net.
- •31. Функциональные компоненты ос. Управление файлами
- •32. Функциональные компоненты ос. Управление процессами.
- •33. Функциональные компоненты ос. Безопасность и защита данныx.
- •34. Функциональные компоненты ос. Пользовательский интерфейс.
- •35. Функциональные компоненты ос. Управление оперативной памятью.
- •36. Компьютерные сети. Сетевые ос и их задачи.
- •37. Компьютерные сети. Протоколы tcp/ip. Интернет.
- •38. Переносимость программного обеспечения. Стандарты операционных систем.
- •1. Стандарт cp/m
- •2. Операционные системы типа dos
- •3. Стандарт msx
- •4. Операционные системы, основанные на графическом интерфейсе
- •6. Операционные системы семейства unix
30. Платформа .Net. Основные идеи и положения. Языки программирования .Net.
.NET Framework — программная технология от компании Microsoft, предназначенная для создания обычных программ и веб-приложений.
Одной из основных идей Microsoft .NET является совместимость различных служб, написанных на разных языках. Например, служба, написанная на C++ для Microsoft .NET, может обратиться к методу класса из библиотеки, написанной на Delphi; на C# можно написать класс, наследованный от класса, написанного на Visual Basic .NET, а исключение, созданное методом, написанным на C#, может быть перехвачено и обработано в Delphi. Каждая библиотека (сборка) в .NET имеет сведения о своей версии, что позволяет устранить возможные конфликты между разными версиями сборок.
Приложения также можно разрабатывать в текстовом редакторе и использовать консольный компилятор.
Подобно технологии Java, среда разработки .NET создаёт байт-код, предназначенный для исполнения виртуальной машиной. Входной язык этой машины в .NET называется MSIL (Microsoft Intermediate Language), или CIL (Common Intermediate Language, более поздний вариант), или просто IL.
Применение байт-кода позволяет получить кроссплатформенность на уровне скомпилированного проекта (в терминах .NET: сборка), а не только на уровне исходного текста, как, например, в С. Перед запуском сборки в среде исполнения CLR байт-код преобразуется встроенным в среду JIT-компилятором (just in time, компиляция на лету) в машинные коды целевого процессора. Также существует возможность скомпилировать сборку в родной (native) код для выбранной платформы с помощью поставляемой вместе с .NET Framework утилиты NGen.exe.
В ходе выполнения процедуры трансляции исходный текст программы (написанный на SML, C#, Visual Basic, C++ или любом другом языке программирования, который поддерживается .NET) преобразуется компилятором в так называемую сборку (assembly) и сохраняется в виде файла динамически присоединяемой библиотеки (Dynamically Linked Library, DLL) или исполняемого файла (Executable, EXE).
Естественно, что для каждого компилятора (будь то компилятор языка C#, csc.exe или Visual Basic, vbc.exe) средой времени выполнения производится необходимое отображение используемых типов в типы CTS, а программного кода – в код "абстрактной машины" .NET – MSIL (Microsoft Intermediate Language).
В итоге программный проект формируется в виде сборки – самодостаточного компонента для развертывания, тиражирования и повторного использования. Сборка идентифицируется цифровой подписью автора и уникальным номером версии.
Встроенные языки программирования (поставляются вместе с .NET Framework):
C#; J#; VB.NET; JScript .NET; C++/CLI — новая версия C++ (Managed).
31. Функциональные компоненты ос. Управление файлами
Функциональные компоненты ОС:
Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования.
Управление файлами:
Способность ОС к «экранированию» сложностей реальной аппаратуры очень ярко проявляется в одной из основных подсистем ОС — файловой системе.
Файловая система связывает носитель информации с одной стороны и API (интерфейс прикладного программирования) для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте или блоке флеш-памяти) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).
С точки зрения операционной системы, весь диск представляет собой набор кластеров размером от 512 байт и выше. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.
Однако файловая система не обязательно напрямую связана с физическим носителем информации. Существуют виртуальные файловые системы, а также сетевые файловые системы, которые являются лишь способом доступа к файлам, находящимся на удалённом компьютере.
В простейшем случае все файлы на данном диске хранятся в одном каталоге. Такая одноуровневая схема использовалась в CP/M и в первой версии MS-DOS 1.0. Иерархическая файловая система со вложенными друг в друга каталогами впервые появилась в Multics, затем в UNIX.
Каталоги на разных дисках могут образовывать несколько отдельных деревьев, как в DOS/Windows, или же объединяться в одно дерево, общее для всех дисков, как в UNIX-подобных системах.
На самом деле, в DOS/Windows системах также, как и в UNIX-подобных существует один корневой каталог со вложенными директориями, имеющими названия «c:», «d:» и т. д. В эти каталоги монтируются разделы жёсткого диска. То есть, c:\ — это всего лишь ссылка на file:///c:/. Однако, в отличие от UNIX-подобных файловых систем, в Windows запись в корневой каталог запрещена, как и просмотр его содержимого.
В UNIX существует только один корневой каталог, а все остальные файлы и каталоги вложены в него. Чтобы получить доступ к файлам и каталогам на каком-нибудь диске, необходимо примонтировать этот диск командой mount. Например, чтобы открыть файлы на CD, нужно, говоря простым языком, сказать операционной системе: «возьми файловую систему на этом компакт-диске и покажи её в каталоге /mnt/cdrom». Все файлы и каталоги, находящиеся на CD, появятся в этом каталоге /mnt/cdrom, который называется точкой монтирования (англ. mount point). В большинстве UNIX-подобных систем съёмные диски (дискеты и CD), флеш-накопители и другие внешние устройства хранения данных монтируют в каталог /mnt,/mount или /media. Unix и UNIX-подобные операционные системы также позволяет автоматически монтировать диски при загрузке операционной системы.
Обратите внимание на использование слешей в файловых системах Windows, UNIX и UNIX-подобных операционных системах (В Windows используется обратный слеш «\», а в UNIX и UNIX-подобных операционных системах простой слеш «/»)
Кроме того, следует отметить, что вышеописанная система позволяет монтировать не только файловые системы физических устройств, но и отдельные каталоги (параметр --bind) или, например, образ ISO (опция loop). Такие надстройки, как FUSE, позволяют также монтировать, например, целый каталог на FTP и ещё очень большое количество различных ресурсов.
Ещё более сложная структура применяется в NTFS и HFS. В этих файловых системах каждый файл представляет собой набор атрибутов. Атрибутами считаются не только традиционные только для чтения, системный, но и имя файла, размер и даже содержимое. Таким образом, для NTFS и HFS то, что хранится в файле, — это всего лишь один из его атрибутов.
Если следовать этой логике, один файл может содержать несколько вариантов содержимого. Таким образом, в одном файле можно хранить несколько версий одного документа, а также дополнительные данные (значок файла, связанная с файлом программа). Такая организация типична для HFS на Macintosh.
