
- •5. Резистивный элемент
- •8) Методы эквивалентных преобразований ( сущность и последовательность расчета).
- •9)Метод наложения (сущность и последовательность расчета)
- •10)Законы Киргофа и их применение прирасчете электрических цепей
- •11) Метод контурных токов ( сущность и последовательность расчета)
- •12. Метод узловых потенциалов (сущность и последовательность расчета).
- •13. Метод двух узлов (сущность и последовательность расчета).
- •14. Потенциальная диаграмма (сущность, расчет и принцип построения).
- •15. Метод эквивалентного генератора (сущность и последовательность расчета).
- •16. Получение синусоидального тока (основные понятия и определения)
- •17. Способы представления синусоидальных функций (аналитический, графический, векторный, символический).
- •18. Ток, напряжение и мощность цепи переменного тока с резистивным элементом (схема, векторная диаграмма).
- •19. Ток, напряжение и мощность цепи переменного тока с индуктивным элементом (схема, векторная диаграмма).
- •2 0. Ток, напряжение и мощность цепи переменного тока с емкостным элементом (схема, векторная диаграмма).
- •21. Ток, напряжение и мощность цепи переменного тока с последовательным соединением активного и индуктивного элементов (схема, векторная диаграмма).
- •22) Ток, напряжение и мощность цепи переменного тока с последовательным соединением активного и емкостного элементов (схема, векторная диаграмма).
- •23) Ток, напряжение и мощность цепи переменного тока с последовательным соединением активного, индуктивного и емкостного элементов (схема, векторная диаграмма).
- •24) Активное, реактивное (индуктивное и емкостное), полное и комплексное сопротивления цепу синусоидального тока. Треугольник сопротивлений.
- •25) Законы Ома и Кирхгофа для цепи синусоидального тока ( для мгновенных, действующих и комплексных значений).
- •26) Цепь переменного тока со смешанным соединением проводников (методика расчета)
- •2 6(2) Цепь переменного тока со смешанным соединением элементов (методика расчета и построение векторных диаграмм токов и топографических диаграмм напряжений).
- •27)Активная, реактивная,полная и комплексная мощности цепи синусоидального тока. Треугольник мощностей
- •27(2) Активная, реактивная, полная и комплексная мощность цепи синусоидального тока. Треугольник мощностей.
- •28) Баланс мощностей в цепи синусоидального тока (сущность, уравнение и методика расчета).
- •29. Символический метод расчета и его применение при расчете электрических цепей переменного тока (сущность, основные положения и методика).
- •30)Резонанс напряжений
- •30(2). Резонанс напряжений (определение, условие, характерные особенности)
- •31) Активная реактивная и полная мощность в цепи переменного тока
- •31(2). Активная, реактивная, полная и комплексная проводимости цепи синусоидального тока.
- •32) Цепь переменного тока с параллельным соединением индуктивного и емкостного элементов
- •33. Резонанс токов (определение, условие и характерные особенности).
- •34. Трехфазные источники энергии. Получение трехфазной системы эдс. Способы изображения величин в трехфазных цепях.
- •35. Способы соединения фаз трехфазных источников (приемников). Соединение по схеме «звезда».
- •36) Способы соединенеия фаз трехфазных источникое(приемников). Четырехпроводная система
- •37) Способы соединения фаз трехфазных источников (приемников).Соединение по схеме «треугольник»
- •38 Мощность трехфазной цепи, ее расчет и измерение
- •43. Переходные процессы при включении rl-цепи на постоянное напряжение.
- •44. Расчёт переходных процессов классическим методом
- •45. Переходные процессы в цепи с емкостным и резистивным элементами
- •46. Закон полного тока в магнитной цепи
- •47. Магнитное поле в ферромагнетиках
- •48. Расчёт магнитных цепей
- •49. Катушка с магнитопроводом в цепи переменного тока. Процессы намагничивания магнитопровода идеализированной катушки.
- •52. Электрические измерения их точность и погрешности
- •53. Электроизмерительные приборы
- •54. Приборы магнитоэлектрической системы
- •55. Приборы электромагнитной системы
- •56. Приборы электродинамической системы
- •57. Приборы электростатической с-мы.
- •58. Приборы индукционной системы (устройство и принцип действия).
- •5 9. Назначение, классификация и паспортные данные трансформаторов
- •60. Устройство и принцип действия однофазного трансформатора.
- •61. Опыт холостого хода однофазного трансформатора (схема, цель и методика проведения)
- •62. Опыт короткого замыкания однофазного трансформатора (схема, цель и методика проведения)
- •63. Мощность потерь и кпд трансформатора.
- •64. Трехфазный трансформатор
- •65. Генераторы постоянного тока
- •66. Генераторы независимого возбуждения
- •69. Генератор со смешанным возбуждением.
- •70. Двигатели постоянного тока.
- •71. Двигатель постоянного тока с независимым возбуждением (схема и характеристика).
- •72. Двигатель постоянного тока с последовательным возбуждением (схема и характеристика).
- •73. Двигатель постоянного тока с параллельным возбуждением (схема и характеристика).
- •74. Двигатель постоянного тока со смешанным возбуждением (схема и характеристика).
- •75. Схема управления двигателями постоянного тока. Способы регулирования скорости.
- •76. Принцип получения вращающегося магнитного поля. Синхронная скорость.
- •77. Назначение и классификация машин переменного тока.
- •78. Устройство, принцип действия и характеристики трёхфазных асинхронных двигателей.
- •79. Режимы работы, механические и рабочие характеристики трёхфазных асинхронных двигателей.
- •80. Энергетическая диаграмма и к.П.Д. Трёхфазных асинхронных двигателей.
- •82. Схемы управления трёхфазными асинхронными двигателями.
- •83. Классификация электропривода, выбор двигателей электропривода по мощности и механическим характеристикам.
- •84. Электрические контакты (классификация, устройство, условное обозначение)
- •85. Основные аппараты управления (классификация, устройство, условное обозначение).
- •86. Основные аппараты защиты (классификация, устройство, условное обозначение).
- •87. Полупроводниковые приборы (классификация, обозначения).
- •88. Электропроводность (собственная и примесная) полупроводников.
- •89. Электронно-дырочный переход (определение, прямое и обратное включение, вольт-амперная характеристика).
- •90. Полупроводниковые диоды (классификация и основные характеристики).
- •91. Принцип действия выпрямительного полупроводникового диода.
- •92. Принцип действия стабилизирующего полупроводникового диода (стабилитрона).
- •93,94. Применение диодов. Схемы однофазных однополупериодных выпрямителей.
- •95. Трёхфазная схема выпрямителя с нулевым выводом на полупроводниковых диодах (схема, принцип работы и характеристики).
- •96. Трёхфазная схема выпрямителя Ларионова на полупроводниковых диодах (схема, принцип работы и характеристики).
- •97. Полупроводниковые биполярные транзисторы (классификация и основные характеристики).
- •98. Принцип работы полупроводникового биполярного транзистора.
- •99. Применение транзисторов. Включение биполярного транзистора по схеме с общим эмиттером.
- •100. Применение транзисторов. Включение биполярного транзистора по схеме с общим коллектором. Включение биполярного транзистора по схеме с общей базой.
97. Полупроводниковые биполярные транзисторы (классификация и основные характеристики).
Биполярный транзистор – это полупроводниковый электронный прибор с двумя p-n переходами и тремя и более выводами, служащий для усиления, генерирования и преобразования электрических сигналов.
Все биполярные транзисторы бывают двух типов:
p-n-p типа
n-p-n типа
Также биполярные транзисторы классифицируются по следующим параметрам:
по основному полупроводниковому материалу (кремневые, германиевые, арсенид-галевые и др.).
по частоте (НЧ(<3МГц), СрЧ(3-30 МГц), ВЧ(>30МГц)).
По мощности ( малой мощности(<0,3 Вт), средней мощности(0,3-3 Вт), большой мощности(>3 Вт)).
Основные характеристики биполярных транзисторов:
Uкбо - Максимально допустимое напряжение коллектор-база
Uкбо(и) - Максимально допустимое импульсное напряжение коллектор-база
Uкэо - Максимально допустимое напряжение коллектор-эмиттер
Uкэо(и) - Максимально допустимое импульсное напряжение коллектор-эмиттер
Iкmax - Максимально допустимый постоянный ток коллектора
Iкmax(и) - Максимально допустимый импульсный ток коллектора
Pкmax - Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода
Pкmax(т) - Максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом
h21э - Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером
Iкбо - Обратный ток коллектора
fгр - граничная частота коэффициента передачи тока в схеме с общим эмиттером
Uкэн - напряжение насыщения коллектор-эмиттер
98. Принцип работы полупроводникового биполярного транзистора.
Биполярный транзистор состоит из трех различным образом легированных полупроводниковых зон: эмиттера Э, базы Б и коллектора К. В зависимости от типа проводимости этих зон различают N-P-N (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и P-N-P транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением.
В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Рассмотрим n-p-n транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (нагнетаются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, нагнетаемых из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.