Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 04.docx
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
1.73 Mб
Скачать

Графические тесты

К этой категории относятся тесты, результаты которых отображаются в виде графиков, характеризующих свойства исследуемой последовательности. Среди них:

  • гистограмма распределения элементов последовательности;

позволяет оценить равномерность распределения символов в последовательности и определить частоту повторения каждого символа;

  • распределение на плоскости;

предназначено для определения зависимости между элементами последовательности;

  • проверка серий;

позволяет определить равномерность отдельных символов в последовательности, а также равномерность распределения серий из k бит;

  • проверка на монотонность;

служит для определения равномерности исходя из анализа невозрастающих и неубывающих подпоследовательностей;

  • автокорреляционная функция;

предназначена для оценки корреляции между сдвинутыми копиями последовательностей и отдельных подпоследовательностей;

  • профиль линейной сложности;

тест оценивает зависимость линейной сложности последовательности от ее длины;

  • графический спектральный тест;

позволяет оценить равномерность распределения бит последовательности на основании анализа высоты выбросов преобразования Фурье.

Результаты графических тестов интерпретируются человеком, поэтому на их основе выводы могут быть неоднозначными.

Статистические тесты

В отличие от графических тестов, статистические тесты выдают численную характеристику последовательности и позволяют однозначно сказать, пройден ли тест. Наиболее известны следующие программные пакеты статистических тестов:

Название

Автор

Организация

1

Тесты NIST[1]

Andrew Rukhin, et. al.

NIST ITL

2

TEST-U01[2]

P.L’Ecuyer и др.

Universit´e de Montr´eal

3

CRYPT-X[3]

Helen Gustafson и др.

Queensland University of Technology

4

The pLab Project[4]

Peter Hellekalek

University of Salzburg

5

DIEHARD[5]

George Marsaglia

Florida State University

6

Dieharder[6]

Robert G. Brown

Duke University

7

ENT[7]

John Walker

Autodesk, Inc.

8

The Art Of Computer Programming Vol. 2 Seminumerical Algorithms[8]

Дональд Кнут

Stanford University

9

Handbook of Applied Cryptography[9]

Alfred Menezes и др.

CRC Press, Inc.

Тесты diehard

Основная статья: Тесты DIEHARD

Тесты DIEHARD были разработаны Джорджем Марсальей (англ.) в течение нескольких лет и впервые опубликованы на CD-ROM, посвящённом случайным числам. Они рассматриваются как один из наиболее строгих известных наборов тестов.

Тесты д. Кнута

Тесты Кнута основаны на статистическом критерии . Вычисляемое значение статистики сравнивается с табличными результатами, и в зависимости от вероятности появления такой статистики делается вывод о ее качестве. Среди достоинств этих тестов — небольшое их количество и существование быстрых алгоритмов выполнения. Недостаток — неопределенность в трактовке результатов. Вот краткое описание этих тестов:

  • Проверка несцепленных серий. Последовательность разбивается на m непересекающихся серий и строится распределение для частот появления каждой возможной серии.

  • Проверка интервалов. Данный тест проверяет равномерность распределения символов в исследуемой последовательности, анализируя длины подпоследовательностей, все элементы которых принадлежат определённому числовому интервалу.

  • Проверка комбинаций. Последовательность разбивается на подпоследовательности определённой длины, и исследуются серии, состоящие из различных комбинаций чисел.

  • Тест собирателя купонов. Пусть  — последовательность длины n и размерности m. Исследуются подпоследовательности определённой длины, содержащие каждое m-разрядное число.

  • Проверка перестановок. Данный тест проверяет равномерность распределения символов в исследуемой последовательности, анализируя взаимное расположение чисел в подпоследовательностях.

  • Проверка на монотонность. Служит для определения равномерности исходя из анализа невозрастающих и неубывающих подпоследовательностей.

  • Проверка корреляции. Данный тест проверяет взаимонезависимость элементов последовательности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]