Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 04.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.73 Mб
Скачать

Аппаратные гпсч

Основная статья: Аппаратный генератор случайных чисел

Кроме устаревших, хорошо известных LFSR-генераторов, широко применявшихся в качестве аппаратных ГПСЧ в XX веке, к сожалению, очень мало известно о современных аппаратных ГПСЧ (поточных шифрах), так как большинство из них разработано для военных целей и держатся в секрете. Почти все существующие коммерческие аппаратные ГПСЧ запатентованы и также держатся в секрете. Аппаратные ГПСЧ ограничены строгими требованиями к расходуемой памяти (чаще всего использование памяти запрещено), быстродействию (1-2 такта) и площади (несколько сотен FPGA- или ASIC-ячеек). Из-за таких строгих требований к аппаратным ГПСЧ очень трудно создать криптостойкий генератор, поэтому до сих пор все известные аппаратные ГПСЧ были взломаны. Примерами таких генераторов являются Toyocrypt и LILI-128, которые оба являются LFSR-генераторами, и оба были взломаны с помощью алгебраических атак.

Из-за недостатка хороших аппаратных ГПСЧ производители вынуждены применять имеющиеся под рукой гораздо более медленные, но широко известные блочные шифры (DES, AES) и хеш-функции (SHA-1) в поточных режимах.

Тестирование псевдослучайных последовательностей — совокупность методов определения меры близости заданной псевдослучайной последовательности к случайной. В качестве такой меры обычно выступает наличие равномерного распределения, большого периода, равной частоты появления одинаковых подстрок и т. п.

Теоретическая основа Принципы построения

Один из самых наглядных тестов — тест на равномерное распределение частот появления каждого символа. Пусть  — последовательность длиной n и размерности m. Тогда частоты νi должны принадлежать отрезку . Однако, большинство тестов используют другой метод — принятие или отклонение гипотезы о случайности последовательности, используя статистические распределения.

Зная вероятностные свойства истинно случайной последовательности, можно на их основе проверять гипотезу о том, насколько сгенерированная последовательность похожа на случайную. Для этого для каждого теста подбирается подходящая статистика, вычисляется её значения для идеальной и сгенерированной последовательности. Если разность этих значений превышает некоторое критическое значение, установленное заранее, то последовательность считается неслучайной. Для «хороших» последовательностей вероятность такого события крайне мала(допустим ~0,001 и обозначим её α). Однако, существует вероятность того, что «плохая» последовательность удовлетворит критерию и будет сделан вывод о её случайности(обозначим вероятность такого события β). На практике значения длины последовательности n, α и β связаны, задаётся α и подбирается n такое, чтобы минимизировать β.

Определим величину P-value как вероятность того, что идеальный генератор сгенерировал последовательность менее случайную, чем исследуемый. Тогда если P-value больше α, то исследуемая последовательность считается случайной и наоборот в противном случае.

Кратко шаги статистического тестирования можно изобразить в виде таблицы:

шага

Процесс

Комментарии

1

Постановка гипотезы

Предполагаем, что последовательность является случайной

2

Вычисление статистики исследуемой последовательности

Тестирование на битовом уровне

3

Вычисление P-value

P-value [0; 1]

4

Сравнение P-value с α

Задаем α в пределах [0,001; 0,01]; если P-value>α, то тест пройден

Интерпретация результатов

Пусть дана двоичная последовательность s. Требуется установить, проходит ли данная последовательность статистический тест или нет. Для этого используются несколько различных подходов:

  • пороговое значение

  • фиксированный диапазон значений

  • значение вероятности

Пороговое значение

Данный подход заключается в подсчёте какой-либо статистической величины двоичной последовательности с(s) и его сравнении с некоторым пороговым значением. Если полученное значение с(s) меньше порогового значения, то последовательность s не проходит данный тест.

Фиксированный диапазон значений

Подход также заключается в подсчёте некоторой статистической величины двоичной последовательности с(s) как и в первом случае. Однако теперь мы говорим, что если с(s) выходит за пределы некоторого диапазона значений, то последовательность s не проходит данный тест.

Значение вероятности

Третий подход в определении того факта, что двоичная последовательность s проходит статистический тест, включает подсчёт не только статистической величины с(s), но и соответствующее ей значение вероятности p. Обычно подсчёт конкретной статистической величины производится таким образом, чтобы её большие значения предполагали неслучайный характер последовательности s. Тогда p есть вероятность получения значения с(s) большего либо равного значению с(s'), высчитанного для истинно случайной последовательности s'. Следовательно, малые значения вероятности p (обычно p < 0,05 или p < 0,01) могут быть интерпретированы как доказательство того, что s не является случайной. Таким образом, если для некоторого фиксированного значения a значение вероятности p < a, то двоичная последовательность s не проходит данный тест. Как правило, a принимает значения из интервала [0,001;0,01].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]