Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 04.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.1 Mб
Скачать

Методи з використанням бінарних відношень

Окрім безпосереднього відображення системи переваг децидента у вигляді множини критеріїв якості існують й інші можливості. Зокрема, апарат бінарних відношень дає змогу описувати загальні ситуації та використовувати для вибору рішень експертну інформацію про попарні порівняння варіантів рішень. Довільній ситуації прийняття рішення, поданій у вигляді багатокритерійної задачі, можна поставити у відповідність бінарне відношення на множині допустимих альтернатив.

Зв’язок між довільною парою альтернатив визначається послідовністю бінарних відношень. «Сильним» бінарним відношенням відповідають більші вимоги до переваги однієї альтернативи над іншою та, відповідно, більше непорівняльних варіантів. Найсильніша вимога – повне домінування. Їй відповідає множина альтернатив, оптимальних за Слейтером. «Слабші» бінарні відношення визначають умови, за яких, попри суперечливі оцінки, одна з альтернатив є кращою, ніж інша.

У цих методах, які ще називають методами порогів непорівняльності, попарно порівнюють елементи множини допустимих альтернатив, виходячи з обраного бінарного відношення. Ті з них, що виявляються кращими, утворюють ядро, розмір якого залежить від кількості альтернатив. Якщо бінарне відношення є відношенням домінування на множині критеріїв «», то ядро утворює множина альтернатив, оптимальних за Парето, якщо ж «>» – оптимальних за Слейтером.

Альтернативи, що належать до ядра, вважають тимчасово непорівняльними. Після першого бінарного відношення визначають наступне – «слабше» – і кількість непорівняльних елементів зменшується. Цей процес триває доти, доки кількість елементів ядра не досягне заданого числа. Після цього ці елементи разом з останнім бінарним відношенням надають децидентові, який і приймає остаточне рішення. Окрім цього, у разі потреби децидент може отримати інформацію про попередні кроки. Елементи останнього ядра в певному розумінні найкращі; з іншого боку, вони найнесхожіші між собою.

Методи electre

Групу методів (ELECTRE I, ELECTRE II, ELECTRE III) розробив колектив французьких учених, очолюваний професором Б.Руа. У цих методах бінарне відношення переваги, сильніше за відношення Парето, будується наступним чином [58].

Для кожного з n критеріїв (числових) визначають вагу – число, що характеризує його важливість; воно тим більше, чим важливішим для децидента є критерій. Ці ваги можуть бути визначені ранжуванням або, наприклад, методом Т.Сааті. У найпростішому випадку і-му з n критерію відповідає ціле число рi, яке Б.Руа запропонував інтерпретувати як кількість голосів журі, поданих за нього.

Щоб з’ясувати, чи альтернатива x = (х1, ..., хm) краща за y = (y1, ..., ym), над відповідними образами в просторі критеріїв Q(x) = (Q1(x) , …, Qn(x)) і Q(y) = (Q1(y) , …, Qn(y)), виконують наступні дії.

Множину критеріїв Q розбивають на три підмножини:

  • Q+(x, у) – критерії, за якими альтернатива х перевершує у,

  • Q=(x, у) – критерії, за якими альтернативи х та у отримали однакові значення;

  • Q(x, у) – критерії, за якими альтернатива у перевершує х.

Визначають також відповідні множини індексів I+(x, у), I=(x, у), I(x, у) і відносну важливість кожної з них.

Встановлюють певне порогове значення і вважають, що варіант х перевершує варіант у лише тоді, коли для певної функції, яка називається індексом згоди, виконано умову

(4.6)

Вигляд функції f залежить від модифікації методу ELECTRE. Нерівність (4.6) є необхідною, проте не достатньою умовою переваги альтернативи х над у.

У методах ELECTRE формулюються додаткові умови, що дають змогу враховувати не лише порядок оцінювання альтернатив х та у за критеріями, але й значення модулів різниць . Ці умови, які називають індексом незгоди, можуть бути записати у вигляді

dxyd1,

де d1 – порогове значення індексу незгоди dxy, яке залежить від модифікації методу ELECTRE. За допомогою індексів згоди та незгоди визначається відношення переваги:

У методі ELECTRE І індекс згоди є відношенням суми ваг критеріїв підмножин Q+(x, у) та Q=(x, у) до загальної суми ваг:

де pі – вага і-го критерію.

Індекс незгоди обчислюють на множині критеріїв . Для зручності подальших операцій значення індексів незгоди нормують (тобто виражають у частках найбільших значень критеріїв) і впорядковують за значеннями. Отже, обчислені значення індексів згоди та незгоди є нормованими, тобто .

У методі ELECTRE І бінарне відношення переваги задано рівнями індексів згоди та незгоди c1 і d1 (для спрощення формул тут випущено індекси ітерації при значеннях c1 і d1). Якщо , то альтернатива х краща за у. Таким чином рівні c1 і d1 дають змогу виділити ядро, до якого належать домінуючі та непорівняльні альтернативи. Коли значення індексів і , де

достатньо великі, а найбільший з індексів

достатньо малий, у методі ELECTRE II приймають гіпотезу про перевагу альтернативи х над у.

У цьому методі використовують два рівні відношення переваги – сильну та слабку перевагу. Крім того, на відміну від ELECTRE І задають декілька рівнів індексів згоди та незгоди, а саме 1 > c1 > c2 > c3 > 0, 1 > d2 > d1 > 0.

Відношення сильної переваги визначається умовою

а відношення слабкої переваги – умовою

На відміну від попередніх варіантів у методі ELECTRE III використано нечіткі відношення переваги. Отже, у методах цієї групи бінарне відношення визначає підмножину недомінованих альтернатив на множині допустимих альтернатив. Як перше відношення зазвичай беруть «» на множині критеріїв. Це дає змогу виділити як перше ядро множину рішень, оптимальних за Парето. Наступні бінарні відношення будуть вкладені: S1S2 S3  …  Sn. Щоб забезпечити вкладеність послідовних відношень, слід гарантувати виконання певних умов, які пов’язують граничні рівні індексів згоди та незгоди для сусідніх бінарних відношень.

Наприклад, у методі ELECTRE І для цих рівнів індексів на двох сусідніх ітераціях k та k + 1 має виконуватись умова . Однак, на відміну від методу ELECTRE II, у разі застосування методу ELECTRE І на множині альтернатив можуть виникнути нетранзитивні відношення.

Можна звужувати ядро альтернатив й інакше, не використовуючи вагу критеріїв. На ідеї звуження ядра ґрунтується також метод В.Подіновського. Як і в методах ELECTRE, для цього використовують додаткову інформацію про важливість критеріїв. Проте основна й істотна відмінність методу В.Подіновського полягає в тому, що якісна інформація про критерії, що отримується від децидента, не перетворюється на кількісну. Авторові методу не знадобилося вводити вагові коефіцієнти важливості критеріїв, які вносять велику невизначеність у розв’язування задачі.

Інформацію про важливість критеріїв задають сукупністю таких повідомлень децидента:

  • критерій Qi, важливіший, ніж Qj;

  • критерії Qi та Qj, рівноцінні;

  • набір критеріїв важливіший, ніж набір ;

  • набори критеріїв ( і однаково важливі.

Побудоване на підставі цієї інформації бінарне відношення переваги дає змогу істотно звузити множину Парето. Якщо в методах ELECTRE переваги слід оцінювати в шкалі порядку, що не завжди можливо, то в методі В.Подіновського набори критеріїв порівнює експерт-децидент, і це аж ніяк не легше.

Окрім того, метод В.Подіновського застосовний лише до однорідних критеріїв, значення яких належать до однієї й тієї самої множини. Прикладом однорідних критеріїв може служити, наприклад, множина тверджень компетентних експертів, які оцінюють варіанти за єдиною шкалою. Складнощі виникають тоді, коли критерії неоднорідні (на практиці так буває доволі часто). Оцінювання порівняльної важливості неоднорідних критеріїв по суті зводиться до визначення коефіцієнтів важливості, і в цьому випадку краще застосовувати методи ELECTRE.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]