
- •1.Виды силового оборудования мзр.
- •2.Категории грунтов по трудности разработки грунтов.
- •3. Основными физико-механическими свойствами грунтов.
- •4.Основные теории для расчета сил резания и копания грунтов.
- •5. Влияние геометрии ножа и его износа на сопротивление резанию.
- •6. Индексация и основные параметры одноковшовых экскаваторов
- •7. Определение основных параметров проектируемого трактора
- •8. Определение Производительности бульдозера на планировочных работах
- •9. Схемы рабочего оборудования цепных траншейных экскаваторов. Основные параметры.
- •10. Определение производительности моторных катков.
- •11.Классификация машин для земляных работ. Перспективы их развития
- •12. Погрузчики. Назначение, классификация и устройство.
- •13. Классификация машин для уплотнения грунтов и материалов.
- •15. Устройство и работа ковша драглайна.
- •16. Многоковшовые экскаваторы непрерывного действия. Роторные траншейные экскаваторы.
- •17. Определение времени цикла работы бульдозера и производительности.
- •18. Устройство и принцип работы виброплощадок и виброкатков.
- •19. Устройство и принцип работы прямой лопаты экскаватора.
- •20. Многоковшовые траншейные роторные экскаваторы. Параметры. Конструкционные схемы.
- •21. Скреперы. Устройство. Конструктивные схемы.
- •22. Классификация одноковшовых экскаваторов. Виды рабочего оборудования и их конструктивные схемы.
- •24. Классификация и параметры бульдозеров и технологические схемы работ.
- •25.Землесосные установки. Схема работы и передвижения.
- •27.Одноковшовые погрузчики. Схемы. Технология работ.
- •28. Роторные поворотные экскаваторы. Схема принципиальная.
- •29.Рабочее оборудование скреперов и его рабочий цикл.
- •30. Буровые машины и оборудование.
- •31. Основные дефекты ножей бульдозеров, способы их востановления.
- •32. Преимущество и особенности гидравлического экскаватора.
- •33. Грейдер-элеваторы. Схемы рабочих органов. Ходовые системы.
- •34. Назначение и классификация землеройно-транспортных машин.
- •37. Конструктивная схема автогрейдера. Основные параметры и механизмы. Классификация.
- •38. Определение производительности скрепера.
- •40. Машины и оборудование для бестраншейной проходки грунтов
- •23. Механизмы поворота одноковшового экскаватора. Схемы механизмов.
- •26. Конструктивные схемы и параметры машин для бурения грунтов.
30. Буровые машины и оборудование.
Бурение – процесс разрушения грунта с образованием в грунтовом массиве цилиндрических полостей. При диаметре до 75 мм и глубине до 9 м полости называют шпурами, при больших диаметре и глубине – скважинами. Начало скважины на поверхности грунтового массива называется устьем, дно – забоем, а боковая поверхность стенками.
По назначению бурильные машины делятся на машины для образования шпуров по углю и горным породам и для проведения скважин различного назначения — разведочных, сбоечных, вентиляционных, дренажных, дегазационных и др.
Бурильные машины, кроме того, классифицируют по способу разрушения горной породы, роду потребляемой энергии.
По первому признаку их подразделяют на машины с механическим, физическим и комбинированным способами разрушения породы, по роду потребляемой энергии — на электрические, пневматические, гидравлические и комбинированные.
При механическом способе разрушения осуществляется непосредственное воздействие специального бурового инструмента на разрушаемую породу. К этому способу относят ударно-поворотное, вращательное, ударно-вращательное и вращательно-ударное бурение.
При физическом способе разрушения на породу воздействуют газами, жидкостями, электрическим током, теплом или другими видами энергоносителя. К этому способу относят огневое (термическое), взрывное, ультразвуковое, гидравлическое и электрогидравлическое бурение.
При комбинированном способе разрушения на породу воздействуют с помощью механического и физического способов одновременно.
Ударно-поворотное бурение (рис. IV.34, а) характеризуется тем, что клиновидный инструмент внедряется в породу под действием кратковременной, но значительной по величине ударной нагрузки Fyд, направленной по оси инструмента. При этом осевое усилие прижатия инструмента Foc очень мало и обеспечивает только контакт инструмента с породой в момент удара. Крутящий момент MKР также очень мал. После каждого удара вследствие упругости породы и инструмента последний отскакивает от забоя и поворачивается механизмом поворота на некоторый угол β (рис. IV.35), обычно равный 10—20°. Под действием ударной нагрузки происходит разрушение породы под действием бура (борозды 1—1, 2—2 и 3—3) глубиной h и скалывание ее под действием горизонтальной составляющей F6.
Вращательное бурение (рис. IV.34, б) характеризуется тем, что резец под воздействием осевого усилия подачи F,,c и крутящего момента МКР движется поступательно на забой, отделяя по винтовой линии срез толщиной h. Ударные нагрузки при этом отсутствуют. Разрушение породы может осуществляться резанием, смятием и раздавливанием. Удаление продуктов бурения из шпура или скважины производится с помощью витых штанг или шнеков, сжатого воздуха и воды.
Ударно-вращательное бурение (рис. IV.34, в) можно рассматривать как ударное с непрерывным вращением инструмента. Разрушение породы происходит под действием большой ударной нагрузки Fуд, передаваемой клиновидному инструменту (долоту), постоянно прижатому к забою с относительно небольшим осевым усилием Fоc при непрерывном вращении инструмента под воздействием небольшого крутящего момента Мкр, достаточного для того, чтобы производить зачистку шпура (или скважины) от разрушенной породы и срезать небольшую часть ее, слабо связанную с массивом.
Вращательно-ударное бурение (рис. IV.34, г). Разрушение породы происходит под воздействием значительных по величине осевой нагрузки Foc, ударной Fyjr, а также крутящего момента МКР. При таком сочетании усилий основная часть энергии затрачивается на разрушение породы резанием, а ударная нагрузка увеличивает глубину внедрения резца. Область применения — неабразивные породы с коэффициентом крепости f = 6 ÷ 14.