
- •1. Работа и кинетическая энергия.
- •2. Силы инерции при ускоренном произвольном движении системы отсчета. Движение в инерциальной со
- •Парадокс Гиббса.
- •Формулировка
- •[Править]Изменение энтропии газа при адиабатическом расширении в вакууме
- •[Править]Возможные решения
- •1. Давление в мкт:
- •Вывод основного уравнения мкт
- •2. Постулаты в теории относительности:
- •Кинетическая энергия в разных системах отсчета:
- •1. Момент силы и импульса 2. Температура и термодинамическое равновесие 3. Энтропия вероятности
- •Единицы
- •Специальные случаи [править]Формула момента рычага
- •Вычисление момента
- •2. Температура и термодинамическое равновесие:
- •3. Энтропия вероятности:
1. Давление в мкт:
Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Основными доказательствами этих положений считались:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.
,
где k является постоянной
Больцмана (отношение универсальной
газовой постоянной R к числу
Авогадро NA), i —
число степеней свободы молекул (
в
большинстве задач про идеальные газы,
где молекулы предполагаются сферами
малого радиуса, физическим аналогом
которых могут служить инертные газы),
а T -
абсолютная температура.
Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).
Вывод основного уравнения мкт
Пусть
имеется кубический сосуд с ребром
длиной
и
одна частица массой
в
нём.
Обозначим
скорость движения
,
тогда перед столкновением со стенкой
сосуда импульс частицы
равен
,
а после —
,
поэтому стенке передается импульс
.
Время, через которое частица сталкивается
с одной и той же стенкой, равно
.
Отсюда следует:
Так
как давление
,
следовательно сила
Подставив,
получим:
Преобразовав:
Так
как рассматривается кубический сосуд,
то
Отсюда:
.
Соответственно,
и
.
Таким
образом, для большого числа частиц верно
следующее:
,
аналогично для осей y и z.
Поскольку
,
то
.
Это следует из того, что все направления
движения молекул в
хаотичной среде равновероятны.
Отсюда
или
.
Пусть
—
среднее значение кинетической энергии
всех молекул, тогда:
,
откуда, используя то, что
(количество
вещества), а
,
имеем
.
2. Постулаты в теории относительности:
Одновременно было показано противоречие между классической теорией и уравнениями Дж. К. Максвелла (английский физик, 1831—1879), лежащими в основе понимания света как электромагнитной волны.
Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v<<с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.
Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, —релятивистскими эффектами.
В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.
I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.
П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт.
Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.
Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности.