
- •1.Теплопроводность. Закон Фурье
- •2. Дифференциальное уравнение теплопроводности.
- •3.Условия однозначности для процессов теплопроводности:
- •4. Теплопроводность при стационарном режиме:плоская стенка
- •5. Теплопроводность при стационарном режиме: Для многослойной плоской стенки.
- •6. Теплопроводность при стационарном режиме: Цилиндрическая стенка (однослойная).
- •7. Теплопроводность при стационарном режиме: Цилиндрическая стенка (многослойной).
- •8. Критический диаметр цилиндрической стенки
- •9. Теплопроводность в стержне (ребре) постоянного поперечного сечения.
- •10. Теплопередача через ребристую плоскую стенку
- •11. Нестационарные процессы теплопроводности.
- •12. Регулярный режим охлаждения (нагревания) тел.
- •13. Охлаждение (нагревание) тел конечных размеров.
- •Охлаждение длинного прямоугольного стержня
- •Охлаждение цилиндра конечной длины
- •14. Метод конечных разностей.
- •15. Конвективный теплообмен. Свойства теплоносителей. Теория пограничного слоя. Теория подобия и критериальные уравнения. Коэффициент теплоотдачи.
- •16. Свойства жидкости
- •17. Гидродинамический и тепловой пограничные слои
- •Гидродинамический пограничный слой.
- •Тепловой пограничный слой.
- •18. Теория подобия и критериальные уравнения
- •19. Дифференциальные уравнения конвективного теплообмена (постановка краевых задач конвективного теплообмена)
- •20. Приведение математической формулировки краевой задачи к записи в безразмерных переменных
- •21. Условие подобия физических процессов
- •Следствия из условия подобия
- •22. Получение эмпирических формул
- •23.Теплообмен при вынунужденном продольном оывании плоской поверхности
- •24. Теплоотдача при ламинарном пограничном слое
- •25. Переход ламинарного течения в турбулентное.
- •26. Теплоотдача при турбулентном пограничном слое
- •27. Теплоотдача при вынужденном течении жидкости в трубах
- •28. Теплоотдача при течении жидкости в гладких трубах круглого поперечного сечения
- •1. Теплоотдача при ламинарном режиме
- •29. Теплоотдача при течении жидкостей в трубах некруглого поперечного сечения, в изогнутых и шероховатых трубах
- •30. Теплоотдача при вынужденном обтекании труб и пучков труб Одиночная круглая труба.
- •31. Теплоотдача при свободном движении жидкости.
- •32.Теплообмен при конденсации чистого пара
- •33.Конденсация на горизонтальных трубах
- •34.Т/о при кипении однокомпонентных жидкостей.
- •35. Т/о при пузырьковом кипении жидкости в условиях свободного движения.
- •36. Т/о при пузырьковом кипении в условиях вынужденной конвекции в трубах.
- •37. Теплообмен при пленочном кипении жидкости.
- •38. Теплоперенос излучением. Основные законы лучистого теплообмена. Коэффициент облучённости тел.
- •39. Закон Кирхгофа.
- •40. Закон Стефана-Больцмана.
- •41. Закон Планка.
- •42. Закон Ламберта.
- •43. Лучистый теплообмен между двумя телами в лучепрозрачной среде.
- •44. Лучистый теплообмен между двумя серыми поверхностями определяется по формуле
- •45.Лучистый теплообмен между газами и окружающими их стенками
- •46.Экраны.
- •47. Сложный теплообмен.
- •Теплоотдача
- •Однослойная плоская стенка.
- •48. Теплопередача в теплообменных аппаратах
- •О пределение среднего температурного напора
- •49. Сравнение схем теплообменников.
- •50. Расчет конечной температуры рабочих жидкостей.
Гидродинамический пограничный слой.
Рассмотрим продольное обтекание плоской
поверхности тела безграничным потоком
жидкости. Скорость и температура
набегающего потока постоянны и равны
соответственно
и
.
В области около пластины вследствие
действия сил вязкости образуется тонкий
слой заторможенной жидкости, в пределах
которого скорость изменяется от нуля
на поверхности тела до скорости
невозмущенного потока (вдали от тела).
Этот слой заторможенной жидкости получил
название гидродинамического пограничного
слоя. (Прандтль, 1904 г.).
Чем больше расстояние х от передней
кромки пластины, тем толще пограничный
слой, так как влияние вязкости по мере
движения жидкости вдоль тела все дальше
проникает в невозмущенный поток. Для
течения жидкости внутри пограничного
слоя справедливо условие
,
вне пограничного слоя и на его внешней
границе:
и
Понятия «толщина пограничного слоя» и «внешняя граница пограничного слоя» довольно условны, так как резкого перехода от пограничного слоя к течению вне слоя нет.
при
на внешней границе пограничного слоя.
Т. о. поток разделяется на две части: на пограничный слой и на внешний поток. Во внешнем потоке преобладают силы инерции, вязкостные силы здесь не проявляются. Напротив, в пограничном слое силы вязкости и инерционные силы соизмеримы.
Тепловой пограничный слой.
Кружилиным было введено понятие теплового пограничного слоя – это слой жидкости у стенки, в пределах которого температура изменяется от значения, равного температуре стенки, до значения, равного температуре жидкости вдали от тела.
Для области внутри теплового пограничного
слоя справедливо условие
,
а на внешней границе и вне его
и
при
,
.
У поверхности тепло передается теплопроводностью.
Температурный градиент у поверхности стенки можно приблизительно выразить:
Величина теплового потока определяется формулой Ньютона-Рихмана
Из-за трудности определения
пользуются формулой конвективного
теплообмена
т.о.
Форма и размеры поверхности теплообмена существенно влияют на теплоотдачу. В зависимости от этих факторов может резко меняться характер обтекания поверхности, по-иному строится пограничный слой.
Теплоотдача существенно зависит от режима течения.
18. Теория подобия и критериальные уравнения
Конвективный теплообмен описывается системой дифференциальных уравнений и условиями однозначности с большим количеством переменных. Попытки аналитического решения полной системы уравнений наталкиваются на серьезные трудности. Поэтому большое значение приобретает экспериментальный путь исследования. Однако при изучении столь сложного процесса, как конвективный теплообмен, не всегда легко проводить и опытное исследование.
Для исследования влияния на процесс какой-либо одной величины остальные нужно сохранять неизменными, что не всегда возможно или затруднительно из-за большого количества переменных. Кроме того, нужно быть уверенным, что результаты, получаемые с помощью какой-либо конкретной установки (модели), можно перенести и на другие аналогичные процессы (образец). Эти трудности помогает разрешить теория подобия. С помощью теории подобия размерные физические величины можно объединить в безразмерные комплексы, причем так, что число комплексов будет меньше числа величин. Полученные безразмерные комплексы можно рассматривать как новые переменные.
При введении в уравнения безразмерных комплексов число величин под знаком искомой функции формально сокращается, что упрощает исследование физических процессов.
Теория подобия устанавливает также условия, при которых результаты лабораторных исследований можно распространить на другие явления, подобные рассматриваемому. Ввиду этого теория подобия является теоретической базой эксперимента, но не только. Теория подобия является важным подспорьем теоретических исследований. Хотя методами теории подобия вид искомой функции не может быть определен, эта теория облегчает в ряде случаев анализ процесса и описание полученных результатов.
Для практического использования выводов теории подобия необходимо уметь приводить к безразмерному виду математические описания изучаемых процессов.
Имеется несколько методов, и один из них — метод масштабных преобразований.
независимые переменные: х, у.
зависимые переменные:
постоянные величины:
и др. Для определенной задачи они являются
постоянными.
Таким образом, искомые зависимые переменные зависят от большого числа величин: они являются функцией независимых переменных и постоянных величин.
В качестве масштабов удобно принять
постоянные величины
.
;
;
;
;
,
тогда
;
;
;
;
.
Помимо безразмерных величин
и безразмерных координат X, Y, составленных
из однородных физических величин, в
уравнения входят также безразмерные
комплексы, состоящие из разнородных
физических величин.
Безразмерные соотношения параметров характеризующих процесс, имеющие у подобных явлений в сходственных точках численно одинаковые значения называются числами подобия.
Теоремы:
1). У подобных явлений числа подобия численно одинаковы.
2). Интеграл дифференциальной функции (или системы уравнений) может быть представлен как функция чисел дифференциального уравнения.
3). Подобны те явления, условия однозначности которых подобны, и числа подобия, составленные из условия однозначности, численно одинаковы.
Условия однозначности: Явление, протекающее в геометрически подобных системах; для рассматривания явления можно составить дифференциальные уравнения; установлены существование и единственность решения уравнений при заданных граничных условиях; известны числовые значения коэффициентов и физических параметров.
|
Характеризует соотношение сил инерции и вязкости и определяет гидродинамический режим движения. |
падения давления) |
Характеризует соотношение сил давления и инерции, а также безразмерную величину падения давления |
жидкости) |
Характеризует физические свойства жидкости и способность распространения тепла в жидко- сти |
|
Является мерой отношения молекулярного и конвективного переноса тепла в потоке |
|
Характеризует отношение между интенсив ностью теплоотдачи и температурным полем в пограничном слое потока |
|
Является мерой соотношения между внутрен ним и внешним термическими сопротивле ниями |
время) |
Характеризует связь между скоростью изменения температурного поля, физическими константами и размерами тела |
-разность температур в 2-х точках системы потока и стенки
|
Характеризует подъемную силу, возникающую в жидкости вследствие разности плотностей, а также кинематическое подобие при свободном движении жидкости |
|
Используют при рассмотрении движения жидкости, в которой имеется взвесь
твердых частиц или пузырьков. При
идентичен Gr. |