
- •1.Теплопроводность. Закон Фурье
- •2. Дифференциальное уравнение теплопроводности.
- •3.Условия однозначности для процессов теплопроводности:
- •4. Теплопроводность при стационарном режиме:плоская стенка
- •5. Теплопроводность при стационарном режиме: Для многослойной плоской стенки.
- •6. Теплопроводность при стационарном режиме: Цилиндрическая стенка (однослойная).
- •7. Теплопроводность при стационарном режиме: Цилиндрическая стенка (многослойной).
- •8. Критический диаметр цилиндрической стенки
- •9. Теплопроводность в стержне (ребре) постоянного поперечного сечения.
- •10. Теплопередача через ребристую плоскую стенку
- •11. Нестационарные процессы теплопроводности.
- •12. Регулярный режим охлаждения (нагревания) тел.
- •13. Охлаждение (нагревание) тел конечных размеров.
- •Охлаждение длинного прямоугольного стержня
- •Охлаждение цилиндра конечной длины
- •14. Метод конечных разностей.
- •15. Конвективный теплообмен. Свойства теплоносителей. Теория пограничного слоя. Теория подобия и критериальные уравнения. Коэффициент теплоотдачи.
- •16. Свойства жидкости
- •17. Гидродинамический и тепловой пограничные слои
- •Гидродинамический пограничный слой.
- •Тепловой пограничный слой.
- •18. Теория подобия и критериальные уравнения
- •19. Дифференциальные уравнения конвективного теплообмена (постановка краевых задач конвективного теплообмена)
- •20. Приведение математической формулировки краевой задачи к записи в безразмерных переменных
- •21. Условие подобия физических процессов
- •Следствия из условия подобия
- •22. Получение эмпирических формул
- •23.Теплообмен при вынунужденном продольном оывании плоской поверхности
- •24. Теплоотдача при ламинарном пограничном слое
- •25. Переход ламинарного течения в турбулентное.
- •26. Теплоотдача при турбулентном пограничном слое
- •27. Теплоотдача при вынужденном течении жидкости в трубах
- •28. Теплоотдача при течении жидкости в гладких трубах круглого поперечного сечения
- •1. Теплоотдача при ламинарном режиме
- •29. Теплоотдача при течении жидкостей в трубах некруглого поперечного сечения, в изогнутых и шероховатых трубах
- •30. Теплоотдача при вынужденном обтекании труб и пучков труб Одиночная круглая труба.
- •31. Теплоотдача при свободном движении жидкости.
- •32.Теплообмен при конденсации чистого пара
- •33.Конденсация на горизонтальных трубах
- •34.Т/о при кипении однокомпонентных жидкостей.
- •35. Т/о при пузырьковом кипении жидкости в условиях свободного движения.
- •36. Т/о при пузырьковом кипении в условиях вынужденной конвекции в трубах.
- •37. Теплообмен при пленочном кипении жидкости.
- •38. Теплоперенос излучением. Основные законы лучистого теплообмена. Коэффициент облучённости тел.
- •39. Закон Кирхгофа.
- •40. Закон Стефана-Больцмана.
- •41. Закон Планка.
- •42. Закон Ламберта.
- •43. Лучистый теплообмен между двумя телами в лучепрозрачной среде.
- •44. Лучистый теплообмен между двумя серыми поверхностями определяется по формуле
- •45.Лучистый теплообмен между газами и окружающими их стенками
- •46.Экраны.
- •47. Сложный теплообмен.
- •Теплоотдача
- •Однослойная плоская стенка.
- •48. Теплопередача в теплообменных аппаратах
- •О пределение среднего температурного напора
- •49. Сравнение схем теплообменников.
- •50. Расчет конечной температуры рабочих жидкостей.
16. Свойства жидкости
Большое влияние на теплоотдачу оказывает
и коэффициент вязкости
.
Для каждого вещества эти величины
являются функцией параметров состояния
(температуры и давления, прежде всего
температуры).
При теоретическом анализе конвективного теплообмена для простоты и наглядности выводов в основном будем полагать, что физические свойства жидкости постоянны в исследуемом интервале.
Все реальные жидкости обладают вязкостью; между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующая движению. Согласно закону Ньютона, эта касательная сила S, Па (отнесенная к единице поверхности), которая действует в плоскости, ориентированная по течению, пропорциональна изменению скорости в направлении нормали к этой плоскости:
- динамический коэффициент вязкости,
- кинематический коэффициент вязкости
При течении газа или жидкости, обладающих вязкостью, наличие внутреннего трения приводит к диссипации (рассеянию) энергии. Существо процесса диссипации состоит в том, что часть кинетической энергии движущейся жидкости необратимо переходит в теплоту и вызывает нагревание жидкости.
В дальнейшем в основном будут рассматриваться процессы, для которых выделяемая теплота трения незначительна и ею можно пренебречь.
На теплоотдачу оказывает влияние сжимаемость жидкостей.
Изотермической сжимаемостью или коэффициентом сжатия тела при t=const называют величину
Для капельных жидкостей
,
для воздуха
.
Однако главным является не способность газа сжиматься, а то, насколько он в действительности сжимается в рассматриваемом течении. Если при движении газа возникают разности давления, небольшие по сравнению с его абсолютным давлением, то изменения объема получаются малыми, и такие потоки газа можно считать несжимаемыми.
Значительные изменения давления возникают при больших скоростях течения. При этом нужно учитывать теплоту трения и сжимаемость газа.
Между сжимаемыми и несжимаемыми течениями газа нет резкой границы.
Тепловое расширение жидкости, характеризуемое температурным коэффициентом объемного расширения (p=const)
17. Гидродинамический и тепловой пограничные слои
Для инженерной практики особый интерес представляет теплообмен между жидкостью и омываемым ею телом. Рассмотрим особенности течения и переноса теплоты в пристенном слое жидкости.
Условия «прилипания». В настоящее время в гидродинамике вязкой жидкости получила признание гипотеза о том, что частицы жидкости, прилегающие к твердому телу, адсорбируются телом, т. е. прилипают, т. е. их скорость равна скорости тела (а если тело неподвижно, то нулю). Этот слой «прилипшей» жидкости нужно рассматривать как бесконечно тонкий слой.
Уравнение теплоотдачи. Так как у
поверхности твердого тела имеется
тонкий слой неподвижной жидкости, из
уравнения
следует, что плотность теплового потока
на стенке (теплоотдача) может быть
определена по уравнению Фурье
п — нормаль к поверхности тела.
Таким образом, если известно температурное поле, qc можно вычислить, не обращаясь к закону Ньютона —Рихмана:
При необходимости по известному температурному полю можно определить и коэффициент теплоотдачи
- уравнение теплоотдачи.