
- •1.Матрицы. Сложение матриц и умножение на число. Их свойства.
- •2. Умножение матриц, его свойства.
- •3.Определители 1-ого, 2-ого, 3-его порядка.
- •4.Миноры и алгебраические дополнения.
- •7.Системы ур-ний. Матричная запись системы ур-ний. Связь между решение матричного ур-ния и решением системы.
- •8.Формулы Крамера.
- •9.Метод Гаусса. Решение систем линейных уравнений. Метод Гаусса
- •10.Понятие вектора. Линейные операции над векторами,св-ва.
- •11.Векторное пространство. Примеры.
- •12.Линейная зависимость векторов. Базис векторного пространства.
- •13.Скалярное, векторное, смешанное произведение векторов.
- •14.Векторное произведение векторов
- •15.Смешанное произведение векторов.
- •16. Аффинные системы координат. Декартовы прямоугольные системы координат. Базис на плоскости и в пространстве.
- •17.Прямая на плоскости.
- •18.Плоскость в пространстве.
- •19.Прямая в пространстве.
- •20.Взаимное расположение прямой и плоскости.
- •21. Цилиндрические поверхности.
- •- Эллиптический цилиндр.
- •22.Канонические уравнения поверхностей второго порядка.
- •23.Вывод канонических уравнений эллипса, гиперболы, параболы.
- •24.Последоваетльность. Предел последовательности. Число е.
- •25. Предел функции в точке. Теорема о пределе суммы, разности, произведения и частного.
- •21. Первый и второй замечательный предел.
- •22. Эквивалентность бесконечно малых функций
- •23.Непрерывность функции и классификация точек разрыва
- •24. Производная
- •25.Дифференциал функции
- •26.Теорема Ролля, Коши, Лагранжа.
- •27. Правило Лопиталя.
- •28.Условия возрастание и убывание функции.
- •29. Выпуклость и вогнутость кривой. Точки перегиба
- •30. Асимптоты
- •31. Наибольшее и наименьшее значение непрерывной на отрезке функции
- •33.Частные производные.
- •34. Полный дифференциал ф-ции нескольких переменных
- •35. Уравнение касательной плоскости и нормали к поверхности
- •36. Экстремумы фнп. Наибольшее и наименьшее значение фнп
- •1.Матрицы. Сложение матриц и умножение на число. Их свойства.
13.Скалярное, векторное, смешанное произведение векторов.
Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.
= cos
Свойства скалярного произведения:
= 2;
= 0, если или = 0 или = 0.
= ;
( +
) = + ;
(m ) = (m ) = m( ); m=const
Если
рассматривать векторы
в
декартовой прямоугольной системе
координат, то
= xa xb + ya yb + za zb;
Используя полученные равенства, получаем формулу для вычисления угла между векторами:
;
14.Векторное произведение векторов
Определение.
Векторным
произведением векторов
и
называется вектор
,
удовлетворяющий следующим условиям:
1)
,
где
- угол между векторами
и
,
2) вектор ортогонален векторам и
3) , и образуют правую тройку векторов.
Обозначается:
или
Свойства векторного произведения векторов:
1)
;
2)
,
если
или
=
0 или
=
0;
3) (m ) = (m ) = m( );
4) ( + ) = + ;
5)
Если заданы векторы
(xa,
ya,
za)
и
(xb,
yb,
zb)
в декартовой прямоугольной системе
координат с единичными векторами
,
то
=
Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .
15.Смешанное произведение векторов.
Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .
Обозначается
или
(
,
,
).
Смешанное произведение
по модулю равно объему параллелепипеда,
построенного на векторах
,
и
.
Свойства смешанного произведения:
1)Смешанное произведение равно нулю, если:
а) хоть один из векторов равен нулю;
б) два из векторов коллинеарны;
в) векторы компланарны.
2)
3)
4)
5)
Объем треугольной пирамиды, образованной
векторами
,
и
,
равен :
.
6)Если
,
,
то
.
16. Аффинные системы координат. Декартовы прямоугольные системы координат. Базис на плоскости и в пространстве.
Аффинной системой координат в пространстве (плоскости, на прямой) наз. совокупность точки (начало координат) и базиса этого пространства.
Аффинными
координатами точки М
наз. координаты вектора
,
где О- начало координат.
Декартовой прямоугольной системой координат наз. аффинная система координат с ортнормированным базисом, т.е. базисом, состоящим из единичных взаимноортогональных векторов.
В
случае декартовых прямоугольных
координат базис выбирается из единичных
векторов
на
оси ОХ и
на оси ОУ (
на
оси OZ
);
Углом
между векторами
и
будем
называть наименьший угол на который
нужно повернуть вектор
,
чтобы его направление совпало с
напрвлением вектора
.
Обозначение:
(
).
Если
угол между векторами =
,
то векторы наз. ортогональными
(перпендикулярные).